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I— Introduction

Cartan geometries are a solution to the very general question: what is a geometric
structure? Riemannian geometry, conformal geometry and projective geometry are
examples of geometric situations.

The mindset is the following. A Cartan geometry should first be a manifold with
an homogenous space attached to each point. For instance in Riemannian geometry
each point has an attached Euclidean space by equipping the tangent space with the
Riemannianmetric. This data is then equippedwith a Cartan connection explaining
how the homogeneous spaces are infinitesimally connected.
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When one has two different Cartan geometries, one can ask if they are equivalent.
For instance, when are two Riemannian manifold isometric or at least locally iso-
metric? This is a deep question known under the general name of the equivalence
problem. In Riemannian geometry, the differential system g =∑

dx2
i asks wether the

space is locally euclidean. It is the case if, and only if, a curvature tensor vanishes.
Cartan geometries give a similar procedure for all the geometries: a curvature tensor
vanishes if, and only if, the space is locally homogeneous.

But when the curvature is not zero, the equivalence problem is harder to solve.
What is the meaning of two curvature on two different spaces being equal? Cartan’s
method for the equivalence problem is a general procedure to study and solve this
problem in many situations. An important example is given by the class of the
symmetric spaces: those are the Riemannian spaces that are not flat but have a
parallel curvature tensor. With Cartan’s method one can verify when two spaces
with this property are locally equivalent or not.

In this course, we will describe Cartan geometries and introduce the local equiv-
alence problem between geometric structures. The main global problem we will
deal with is the classification of smooth Anosov flows on a compact three manifold
and, more generally, of non-compact automorphisms groups acting on a compact
manifold preserving a contact distribution and two transverse lines contained in
the contact plane at each point of the manifold.

II—Lie groups andhomogenous spaces

II.1 Lie groups and Lie algebras

We start with the definition of a Lie group. General references for this section are
[War83; Kna02].

Definition II.1 A Lie group is a group G that is also a differential manifold and
such that the operations of multiplication and inverse are smooth. That is, the maps
G ×G →G and G →G given by (x, y) 7→ x y and x 7→ x−1 are smooth.

Definition II.2 A homomorphism H →G of Lie groups is a group homomorphism
which is a smooth map. The automorphism group of H is the group of bijective homo-
morphisms of H into H .

Note that if we ignore continuity in the definition of homomorphisms of Lie
groups one might obtain a much larger set.

To each Lie group is associated a Lie algebra which can be thought as the space of
tangent vectors at the identity of the group.

Definition II.3 A Lie algebra g over R is a real vector space of finite dimension
equipped with a bilinear map

[·, ·] : g×g→ g, (1)

satisfying, for any x, y, z ∈ g the anti-commutativity property [x, y] = −[y, x] and the
Jacobi identity:

[[x, y], z] = [x, [y, z]]− [y, [x, z]]. (2)

Definition II.4 A homomorphism α : h→ g between Lie algebras is a homomor-
phism of vector spaces preserving the Lie bracket, that is, α([X ,Y ]) = [α(X ),α(Y )] for
all X ,Y ∈ h. The automorphism group of h is the group of bijective homomorphisms of
h into h.
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Let G be a Lie group. If a ∈ G is fixed, then one can consider the translations
La(g ) = ag and Ra(g ) = g a called left and right multiplication respectively.

Definition II.5 A vector field X on a Lie group G is left invariant if, for any a ∈G ,
(La)∗(X ) = X . Similarly, it is right invariant if (Ra)∗(X ) = X .

Note that this condition means (La)∗(X (g )) = X (ag ).
An important consequence of this definition is that left (or right) invariant vector

fields are determined by their value at the identity of the group and the Lie bracket
of two invariant vector fields is again invariant. Therefore the set of left invariant
vector fields forms a Lie algebra that can be identified to the tangent space of the
group at the identity.

Definition II.6 The Lie algebra of a Lie group G is the set
g= {

X ∈C∞(TG)
∣∣∀a ∈G , (La)∗(X ) = X

}
(3)

of left invariant vector fields on G equipped with the bilinear map given by the bracket
between vector fields.

A subgroup H ⊂G which is a Lie group and such that the inclusionmap is smooth
is a called a Lie subgroup. Imposing that the inclusion is an embedding is equivalent
to assuming that the subgroup is closed as a subspace of G (this result is called the
closed-subgroup theorem or Cartan theorem).

The relation between Lie algebra homomorphisms and Lie group homomor-
phisms is described by the following.

Theorem II.7 Let H and G be Lie groups and φ : H →G a smooth homomorphism.
Then dφe : h→ g is a homomorphism. Conversely, ifα : h→ g is a homomorphism and
H is simply connected, then there exists a unique smooth homomorphism φ : H →G
such that α= dφe .

Examples
(1) The additive group Rn . The automorphism group coincides with linear iso-

morphisms of Rn , that is to say GL(n,R). But note that the full group of group
automorphisms (not necessarily continuous) of the group Rn contains non-
linear maps.

(2) The set of matrices with determinant one SL(n,R) and the usual product of
matrices as group law.

(3) Let G be a Lie group, N ⊂ G be a normal subgroup and K ⊂ G a subgroup
satisfying N ∩K = {e} and G = N K . (This last condition means that g ∈G can
always be written as nk with n ∈ N and k ∈ K .) In this conditions, we say that
G is the semidirect product of K and N and write G = N oK . Observe that if
g1 = n1k1 and g2 = n2k2 then g1g2 = n1(k1n2k−1

1 )k1k2.
An example is given by the affine linear group Aff(Rn) = Rn oGL(n,R). Given
an affine transformation T acting on the affine plane Rn , the choice of a base
point 0 ∈ Rn allows to write

T (x) = c + f (x) (4)

with c ∈ Rn and f ∈ GL(n,R). This decomposition is unique. Hence Aff(Rn) =
Rn GL(n,R). Note that the change of the base point from 0 ∈ Rn to ζ ∈ Rn

translates to:
ζ+T (x −ζ) = ζ+ (c − f (ζ))+ f (x) (5)

therefore the linear part f of T is independent from the choice of the base
point, but the translational part depends on it.
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The composition of two transformations T1,T2 is given by:
T1(T2(x)) = c1 + f1(c2 + f2(x)) = (c1 + f1(c2))+ f1 f2(x) (6)

and it proves that Aff(Rn) is indeed the semidirect product Rn oGL(n,R).
Note that a convenient representation of the affine group into GL(n +1,R) is
given by

(c, f ) 7→
(

f c
0 1

)
. (7)

Equivalently, semidirect products G = NoK are in correspondance with split
exact sequences

1 → N →G → K → 1 (8)

and in the case of the affine group, we have indeed
0 → Rn → Aff(Rn) → GL(n,R) → 1 (9)

with the last morphism being independent of the choice of a base point and
therefore is indeed restricted to the identity on GL(n,R).

(4) The three dimensional Heisenberg group Heis(3) is defined as

Heis(3) =


1 x z
0 1 y
0 0 1

∣∣∣∣∣∣ (x, y, z) ∈ R3

 (10)

The group law is again the matrix product and is described by1 x z
0 1 y
0 0 1

1 x ′ z ′

0 1 y ′

0 0 1

=
1 x +x ′ z + z ′+x · y ′

0 1 y + y ′

0 0 1

 (11)

Another description of the same group is given by C×R with the (additive)
group law

(x + i y, z) · (x ′+ i y ′, z ′) =
(
(x +x ′)+ i (y + y ′), z + z ′+ 1

2
(x y ′− y x ′)

)
. (12)

Both descriptions are compatible. One can start with the Lie algebra:

heis(3) =


0 x z
0 0 y
0 0 0

 . (13)

The exponential of an element is

exp

0 x z
0 0 y
0 0 0

=

1 x z + 1
2 x y

0 1 y
0 0 1

 . (14)

Therefore exp: heis(3) → Heis(3) is a diffeomorphism. The group law fur-
nishes a law on the Lie algebra by taking the logarithm:

X ·Y = log(exp(X )exp(Y )) = X +Y + 1

2
[X ,Y ] (15)

and this law on heis(3):0 x z
0 0 y
0 0 0

 ·
0 x ′ z ′

0 0 y ′

0 0 0

=

0 x +x ′ z + z ′+ 1
2 (x y ′− y x ′)

0 0 y + y ′

0 0 0

 (16)

gives the second description.
The automorphism group of a simply connected Lie group coincides with the
automorphism group of its Lie algebra. In the case of the Heisenberg group
(which is diffeomorphic to R3) one can use the group operation on the Lie
algebra to determine the automorphisms.
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Proposition II.8 The automorphism group of Heis(3) (described by coordi-
nates (x + i y, t ) = (z, t ) ∈ C×R) is generated by the following transformations.

(a) Transformations (z, t ) 7→ (A(z), t ) where A : C → C is symplectic with re-
spect to the form Im(zz ′) = x y ′− y x ′.

(b) Dilations (z, t ) 7→ (az, a2t ), with a ∈ R∗+.
(c) Conjugations by a translation (a+i b,c) ∈ Heis(3): (x+i y, t ) 7→ (x+i y, t+

ay −bx).
(d) The inversion map (z, t ) 7→ (z,−t ).

Proof We decompose an automorphism φ : Heis(3) → Heis(3) by decom-
posing its derivative dφe : heis(3) → heis(3). With a linear automorphism
dφe , we can write dφe (x + i y, t ) = (A(x, y, t ), at + bx + c y), with A a linear
transformation and a,b,c three real numbers.
We note that an automorphism has to centralize the center of the group: if ζ
is in the center, then 0 = dφe [ζ, ·] = [dφeζ,dφe ·] = [dφeζ, ·]. Therefore A can
not depend on t . (The center of heis(3) is exactly (0, t ).)
From (A(x, y), at +bx+c y) one can compose by the conjugation by a transla-
tion such that dφe becomes (A(x, y), at ). (Choose the translation (−c+i b,0).)
Next, if a is negative then we compose by an inversion. We obtain
(A′(x, y), |a|t ) with A′ that is either A or A. Then we can compose by
a dilatation by λ=p|a|−1 so that we obtain (λA′(x, y), t ).
Now, because t is fixed, λA′ must be a symplectic transformation of C. •

Note Hilbert’s 5th problem deals with the question of to what extent a topological
group has a differential structure. This problem has many interpretations. One of
the most important of them was solved by Gleason, Montgomery-Zippin and Yam-
abe among other contributions: every connected locally compact topological group
without small subgroups (a neighborhood of the identity does not contain a subgroup
other than the trivial subgroup) is a Lie group.

II.1.1 TheMaurer-Cartan form

Given a Lie group G and its Lie algebra g, one might wonder how g controls the
full tangent space TG . Since G is a group, we can always translate TeG to any
Tg G by doing a left translation Lg or a right translation Rg . We choose to identify
any tangent space Tg G with the left translation (Lg )∗TeG . It implies that TG has
a parallelism TG → G × g. This parallelism is determined by the Maurer-Cartan
form.

Definition II.9 A manifold M n is parallelisable if there exists n vector fields
(X1, . . . , Xn) such that at each point p ∈ M , (X1(p), . . . , Xn(p)) is a basis of Tp M .

Definition II.10 The (left) Maurer-Cartan form on a Lie group G is the g-valued
1-form θ defined by

∀Xg ∈ Tg G , θ(Xg ) = (Lg )−1
∗ (Xg ) ∈ g. (17)

Note Let X be a vector field on G , then θ(X ) = v is constant, if and only if, X is left-
invariant and X (g ) = (Lg )∗v . It furnishes a parallelism of G by choosing a basis
of g.
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Recall that for any 1-form α we have
dα(X ,Y ) = X (α(Y ))−Y (α(X ))−α([X ,Y ]). (18)

Proposition II.11 (Structural equation) For any X ,Y ∈ Tg G ,
dθ(X ,Y )+ [θ(X ),θ(Y )] = 0. (19)

Proof We can evaluate dθ(X ,Y ) by assuming that X ,Y are prolongated by left-
invariant vector fields X ∗ and Y ∗. For any left-invariant vector field X ∗, the image
by the Maurer-Cartan form is constant on it by definition. Therefore X ∗(θ(Y ∗)) and
Y ∗(θ(X ∗)) are both zero. Moreover, since X ∗,Y ∗ are left-invariant, so is [X ∗,Y ∗]
and therefore θ([X ∗,Y ∗]) = [θ(X ),θ(Y )]. •

Maurer-Cartan form with coordinates The choice of a basis (e1, . . . ,en) of g allows
to write θ = (θ1, . . . ,θn) by duality. With Xi the left-invariant vector field verifying
θ(Xi ) = ei , we can determine the structure coefficients:

[Xi , X j ] =∑
k

ck
i j Xk . (20)

The structural equation becomes:
dθk (X ,Y ) =−∑

i< j
ck

i jθ
i ∧θ j . (21)

Note Here we use a convention which might be different in some cases (see [KN63]
pg. 28) and is sometimes the cause of a factor of 1

2 in the formula. In factwe define
θ1 ∧θ2(X ,Y ) = θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X ) (22)

in contrast with

θ1 ∧θ2(X ,Y ) = 1

2

(
θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X )

)
. (23)

Example Consider the group SO(2) ⊂ GL(2,R). This group is generated by:

g (φ) =
(
cosφ −sinφ
sinφ cosφ

)
(24)

By differentiating this parametrization, we obtain

dgφ =
(−sinφ −cosφ

cosφ −sinφ

)
dφ (25)

Hence, the Lie algebra is also one dimensional and is generated by a single ele-
ment: (

0 −1
1 0

)
. (26)

The Maurer-Cartan form translates dgφ for any φ to dg0 by a left translation.
Therefore it is given by

θφ = g (φ)−1 dgφ (27)

=
(
cosφ −sinφ
sinφ cosφ

)−1 (−sinφ −cosφ
cosφ −sinφ

)
dφ (28)

=
(
0 −1
1 0

)
dφ. (29)

Matrix groups If G ⊂ GL(n,R) is a matrix group with Lie algebra g⊂ Mn×n one can
write the Maurer-Cartan form at g ∈G and it is given by θg = g−1 dg .

Here we interpret dg as the differential of the embedding of G into the space
of matrices Mn×n . In coordinates gi j of that embedding, one has θg = g−1

i k dgk j ,
which is a g-valued 1-form.
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Vector space valued forms The Maurer-Cartan form is an example of vector space
valued form. We define the wedge product of a V1-valued 1-form θ1 and a V2-valued
1-form θ2 to be the V1 ⊗V2-valued form

θ1 ∧θ2(X ,Y ) = θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X ). (30)

If there exists a bilinear map [·, ·] : V ×V → V we note the composition of ∧ (for
1-forms) and [·, ·] by

[θ1 ∧θ2](X ,Y ) := [θ1(X ),θ2(Y )]− [θ1(Y ),θ2(X )]. (31)

Observe then that [θ1(X ),θ2(Y )] = 1
2 [θ1 ∧θ2](X ,Y ).

Writing, in general, θn for a g-valued n-formwemay define the exterior derivative
and the product of two forms accordingly. We easily verify:

(1) [θp ∧θq ] = (−1)pq [θq ∧θp ],
(2) (−1)pr [[θp ∧θq ]∧θr ]+ (−1)qr [[θr ∧θp ]∧θq ]+ (−1)qp [[θq ∧θr ]∧θp ].

Moreover,
d[θp ∧θq ] = [dθp ∧θq ]+ (−1)pq+1[θp ∧dθq ]. (32)

Darboux derivatives

A Maurer-Cartan form allows the computation of Darboux derivatives.

Definition II.12 If f : M →G is smooth and if θ is the Maurer-Cartan form of G
then the Darboux derivative of f is:

f ∗θ = θ f∗. (33)

Example 1 In Rn the Darboux derivative is in a sense closer to the usual derivative
than the differential. Indeed, recall that if f : Rp → Rn is smooth, then

∀(x, v) ∈ TRn , f∗(x, v) = ( f (x),d fx (v)). (34)

The consideration of f∗ or even d f depends strongly on the consideration of a base
point. But with the Darboux derivative, the tangent spaces are connected:

f ∗θ(x, v) = θ( f (x),d fx (v)) = [d fx (v)] (35)

and the class of [d fx (v)] belongs to a single copy of Rn .

Example 2 One parameter subgroups of a group G are defined by elements of the
Lie algebra. For any x ∈ g one defines a homomorphism

expx : R →G , (36)

which is the unique homomorphism satisfying exp∗
x θ = x .

Definition II.13 The exponential map exp: g→G is defined by
exp(x) = expx (1). (37)

Although exp has several properties analogous to the real exponential, due to
the non-commutativity, one has a more complicated formula for the product of
two exponentials (it is the Baker-Campbell-Hausdorff formula which is only valid
locally):

exp(x)exp(y) = exp

(
x + y + 1

2
[x, y]+·· ·

)
. (38)

If φ : H → G is a group homomorphism one has
exp◦dφe =φ◦expe . (39)

Lemma II.14 Let X be a left-invariant vector field. Then its flow is Rexp(t x) with
x = θ(X ).
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Proof Since X is left-invariant, so must be its flow. Therefore the integral curve
at g ∈G is given by Lg exp(t x) = Rexp(t x)g . Hence the flow is given by Rexp(t x). •

II.1.2 The adjoint representation

An action of a Lie group G on a manifold induces a representation of the group on
the automorphism group of the tangent space of a fixed point of the action. For, let
φ : G ×M → M be an action with a fixed point G ·p = p at p ∈ M . Then for every
g ∈ G , dφ(g ,p) acts on Tp M as a linear isomorphism. It furnishes a representation
g 7→ dφ(g ,p) ∈ Aut(Tp M).

In particular the adjoint action G×G →G defined by (g ,h) 7→ g hg−1 induces the
representation Ad: G → Aut(TeG) (observe that Aut(TeG) is isomorphic to GL(n,R)
with n = dimR G). For g ∈ G , Adg is the automorphism

Adg (X ) = d(h 7→ g hg−1)e (X ) = (Lg )∗(Rg−1 )∗X (40)

The adjoint representation is also exactly what we need to compare the Maurer-
Cartan form θ defined by left-invariance with the action by right translations.

Proposition II.15 For any g ∈G , the Maurer-Cartan form θ verifies
R∗

g θ(X ) = Ad−1
g (θ(X )). (41)

Proof Assume that X = (Lx )∗v . By the preceding definition, we have:
R∗

g θ(X ) = θ((Rg )∗X ) (42)

= θ((Rg )∗(Lx )∗v) (43)

= θ((Lx )∗(Rg )∗v) (44)

= θ((Rg )∗v) (45)

= (Lg )−1
∗ (Rg )∗v = Ad−1

g v. (46)

•

The differential of Adg at the origin g = e is denoted by ad: g→ End(TeG):
adx = dAde (x). (47)

It is in fact given by the bracket of the Lie algebra.

Lemma II.16 Let x, y ∈ g∼= TeG . Then
dAde (x, y) = adx (y) = [x, y]. (48)

Proof Let X ,Y be the left-invariant vector fields prolongating x and y . That is
to say, θ(X ) = x and θ(Y ) = y with θ the Maurer-Cartan form. First, observe the
identity:

d2id(V ,W ) =V (id(W ))−W (id(V ))− [V ,W ] (49)

showing that, since d2id = 0,
[V ,W ] =V (id(W ))−W (id(V )). (50)

On the other hand we have
dAd(X ,Y ) = X (Ad(Y ))−Y (Ad(X ))−Ad([X ,Y ]) (51)

We prove that
X (Ad(Y ))|e = 2X (id(Y ))|e . (52)
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Recall that the flow φt of X is Rexp(t X ). Hence on one hand:

X (id(Y ))|e = lim
t=0

(φ−t
e )∗Y (φt

e (e))−Y (e)

t
(53)

= lim
t=0

(Rexp(−t X ))∗(Lexp(t X ))∗Y (e)−Y (e)

t
(54)

= lim
t=0

Ad(exp(t X ))∗Y (e)−Y (e)

t
(55)

and on the other hand (note that Adφ(Y ) is again left-invariant):

X (Ad(Y ))|e = lim
t=0

(φ−t
e )∗ Adφt

e (e)(Y )(φt
e (e))−Y (e)

t
(56)

= lim
t=0

(Rexp(−t X ))∗(Lexp(t X ))∗(Lexp(t X ))∗(Rexp(−t X ))∗Y (e)−Y (e)

t
(57)

= lim
t=0

Ad(exp(2t X ))∗Y (e)−Y (e)

t
(58)

= 2X (id(Y ))|e . (59)

To conclude, we observe that at e ∈G :
dAd(X ,Y )|e = X (Ad(Y ))−Y (Ad(X ))−Ad([X ,Y ]) (60)

= 2X (id(Y ))|e −2Y (id(X ))|e −Ade [X ,Y ]|e (61)

= 2X (id(Y ))|e −2Y (id(X ))|e − [X ,Y ]|e (62)

= [X ,Y ]|e . (63)

•

More generally, we have:

Proposition II.17 The differential of the representation Ad: G → Aut(TeG) at
g ∈G computed at the vector X ∗ = (Lg )∗X ∈ Tg G is

dAdg (X )(Y ) = Adg (adX (Y )). (64)

Proof Writing a path through g as Lgγ(t ) with γ(0) = e and γ̇(0) = X we have
AdLgγ(t )(Y ) = Adg ◦Adγ(t )(Y ). Therefore

(dAdg (X ))(Y ) = dAdg ◦Adγ(t )

dt

∣∣∣∣
t=0

(Y ) = Adg ◦adX (Y ). (65)

•

The adjoint automorphism by g ∈G fits in the following commutative diagram

g g

G G

Ad(g )

exp exp

g (·)g

(66)

and the adjoint representation satisfies

g End(g)

G Aut(g)

ad

exp exp

Ad

(67)

II.2 Homogeneous spaces

Homogeneous spaceswill be the flatmodel geometries. They appear naturally when
there exists a transitive action. Indeed, if G × M → M is a transitive action one
can identify M with the quotient G�Hx

where Hx is the isotropy subgroup of a
chosen element x ∈ M . A different choice g x ∈ M gives rise to the isotropy Hg x =
g Hx g−1.
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Definition II.18 A homogeneous space is a differential manifold obtained by the
quotient of a Lie group G by a closed Lie subgroup H ⊂G . We note the set of left cosets
g H by G�H .

The groupG acts transitively on the homogeneous space G�H by left translations,
the isotropy subgroup at the identity being H .

Note If H were not closed then the quotient G�H would not separated with the
quotient topology.

Examples
(1) The Euclidean space.

The group of the isometries of the Euclidean space is Eucl = RnoO(n). It acts
on Rn with isotropy O(n). Therefore Rn = Eucl�O(n) as homogeneous space.

(2) The hyperbolic space.
Hyperbolic space is the simply connected complete constant negative sec-
tional curvature Riemannian space. Its connected isometry group is SO(n,1)
with isotropy SO(n). Here SO(n,1) is the group preserving the quadratic form(

idRn 0
0 −1

)
. (68)

(3) The similarity group acting on Rn .
The connected similarity group is the group Sim(Rn) = Rn o (R∗+×O(n)). It is
a subgroup of the affine group Aff(Rn). Transformations of R∗+×O(n) are of
the form λP (x) with λ> 0 and P an orthogonal transformation.
The similarity group is the conformal group acting on Rn . (Each conformal
transformation has to be defined on the full space Rn .) Therefore, it consists
of the transformations of Rn which preserve angles. The isotropy at the origin
is R∗+×O(n).

(4) The conformal sphere.
There are more conformal transformations than just Sim(Rn). But those are
not defined strictly on Rn but rather on the one-point compactification Sn .
The conformal sphere is the homogeneous space PO(n +1,1)/Sim(Rn).

(5) The projective space.
The projective space RPn is the homogenous space GL(n +1,R)/H where

H =
{(
? ?

0 A

)∣∣∣∣ A ∈ GL(n,R)

}
. (69)

(6) Flag spaces.
The projective space is an example of flag spaces. A flag is a sequence {0} ⊂
V1 ⊂ ·· · ⊂Vn = Fn for any field F. For instance, the projective space FPn is the
set of lines in Fn+1.
A complete flag is a flag with dimVi = i . They are maximal in length. When
F = C we get an homogeneous space structure with the quotient

SU(n)�S(U(1)×·· ·×U(1)). (70)

(7) Stiefel manifolds.
The space of orthonormal k-frames in Rn (with 0 < k < n) is the Stiefel mani-
fold S(k,n). It is possible to show that

S(k,n) = SO(n)�SO(n −k). (71)
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(8) Every manifold is a homogeneous space.
The full group of the diffeomorphisms of a manifold is not a Lie group but
might be described by an analogous structure with infinite dimension.
The easiest situation is for a compact manifold, say M . The smooth diffeo-
morphism group Diff∞(M) has a structure of a Fréchet Lie group which is
homeomorphic to the space of smooth vector fields. The group Diff∞(M)
acts transitively on M . Therefore, any manifold can be considered as a homo-
geneous space Diff∞(M)/H , where H is the isotropy at a point in M , that is to
say, the set of diffeomorphisms fixing the point. We will not deal with infinite
dimension Lie groups.

Construction à la Cartan We can reproduce how Cartan described the construction
of theMaurer-Cartan form at the early stages of the theory. In fact, we here describe
the main technique of the moving frame (repère mobile) that Cartan attributes to
Darboux.

Consider the affine space R3. At any point m ∈ R3, associate a frame (e1,e2,e3)
base at m. The map (e1,e2,e3) should be smooth depending on m.

The infinitesimal change of m by δm can be expressed by:
δm =ω1e1 +ω2e2 +ω3e3. (72)

It gives a 1-form with values in R3.
The infinitesimal change of a base vector ei by δei can be described by the image

of an infinitesimal matrix acting on (e1,e2,e3):
δei =ω1

i e1 +ω2
i e2 +ω3

i e3 (73)

and this furnishes a 1-form with values in gl(3).
Those four 1-forms θ = (δe1,δe2,δe3,δm) compose the Maurer-Cartan form of

the affine space.

II.2.1 The tangent space

With a homogeneous space G�H the tangent space can be described infinitesimally
and the action of G (on the left) can be measured.

At eH , the tangent space is naturally isomorphic to g�h as linear spaces. There-

fore, the tangent bundle of the homogenous spaces TG�H can be seen as a quotient
of the trivial bundle

G ×H g�h. (74)

The quotient will be by the right action of H :
(g , v) ·h ∼ (g h,Ad(h)−1v). (75)

Note that at the isotropy H ⊂ G , the action of h ∈ H on a point pH is hpH =
hph−1H and therefore H acts on TeH

G�H by Ad(h).

Proposition II.19 There exists a canonical isomorphism
TG�H

∼=G ×H g�h. (76)

Proof Letπ : G →G�H be the quotientmap. Letφ : G×g�h→ TG�H be defined by
φ(g , v) = (g H ,π∗(Lg )∗v). (77)
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We prove that this map is well defined in the quotient by the right action of H . Note
that π∗(Rh)∗ =π since π◦Rh =π and π∗(Lg )∗ = (Lg )∗π∗.

φ((g , v) ·h) =φ(g h,Ad(h)−1v) (78)

= (g hH ,π∗(Lg h)∗ Ad(h)−1v) (79)

= (g H , (Lg )∗π∗(Rh)∗v) (80)

= (g H , (Lg )∗π∗v) =φ(g , v) (81)

We can check that this morphism is injective at every point. If φ(g , v) = (g H ,0)
then π∗v = 0 and therefore v ∈ h. It is surjective by dimensionality. •

II.2.2 Effective pairs

It is important to keep track of both groups G and H and not only their quotient
space. On the other hand it is reasonable to consider only connected quotients
G�H .

Definition II.20 We will refer as a Klein geometry a pair (G , H) such that the
homogeneous space G�H is connected.

There are two conditions which one can add without much loss of generality,
namely, that the action of G be effective and that G be connected.

Note that if g ∈ G acts trivially on G�H then g eH = eH and therefore g ∈ H .
Let h ∈ H be acting trivially. For any g ∈ G and any coset pH we would have that
g hg−1pH = g (h(g−1pH)) is equal to g (g−1pH) since h acts trivially on g−1pH and
therefore g hg−1pH = pH . So if h acts trivially, then g hg−1 does too.

Definition II.21 We say that a maximal subgroup K ⊂ H which is normal in G is
the kernel of a Klein geometry. The action of K is trivial and we say that the geometry
is effective if K = {e}.

If K is the maximal normal subgroup in H (the definition implies that K is a
closed subgroup of G) one can consider the effective geometry (G�K , H�K ) which

describes the same homogeneous space as (G�K )�(H�K ). It is diffeomorphic to

G�H with an equivariant action by G�K .
Sometimes one might consider non-effective Klein geometries. For instance,

SL(2,R)�SO(2) corresponds to the hyperbolic geometry but the subgroup Z2 ⊂
SL(2,R) generated by − id is a maximal normal subgroup contained in SO(2).
Nonetheless, this subgroup is discrete and is does not intervene infinitesimally.

If G is not connected one can consider the connected component containing the
identity Ge ⊂ G and we obtain that G�H is diffeomorphic to Ge�(H ∩Ge ) with an

equivariant action by Ge . This follows since if G�H is connected, one has G =Ge H .
On the other hand, one can prove that if H is connected then G is also connected.

Lemma II.22 Let N ⊂ G be a normal subgroup with corresponding algebras n ⊂ g.
Then for all v ∈ g and n ∈ N ,

Adn(v)− v ∈ n. (82)

Proof Since N is normal, for any g ∈G and any n ∈ N we have ng n−1g−1 ∈ N . Let
g (t ) = exp(t v). We have:

(LnLg (t )Rn−1 )g (−t ) ∈ N (83)

and by derivation at t = 0:
Adn(v)− v ∈ n. (84)

•
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Reciprocally, this condition implies, by differentiation along a path in N , that
[n,g] ⊂ n so n is an ideal of G .

We will need to identify maximal normal subgroups of G contained in H ⊂G . The
goal is to obtain properties for effective Klein geometries. The easiest way to start
is with a normal subgroup N of H (N = H is the most natural choice) so that its
Lie algebra n is an ideal of h. According to the preceding lemma, a candidate for
a normal subgroup of G contained in N ⊂ H is

N ′ = {
n ∈ N |∀v ∈ g, Adn v − v ∈ n}

. (85)

The subgroup N ′ might be much smaller that N . At least, it is still normal in H :
Adhnh−1 (v)− v = Adh(Adn Adh−1 (v)−Adh−1 (v)) ∈ Adh(n) ⊂ n. (86)

The greatest normal subgroup of G which is contained in H is obtained by the
following procedure.

Proposition II.23 Suppose G is connected and H ⊂ G a closed Lie subgroup.
Define the decreasing sequence of subgroups of H :

N0 = H , (87)

∀i ≥ 0, Ni+1 =
{
n ∈ H | Adn v − v ∈ ni , ∀v ∈ g} . (88)

Then, each Ni ⊂ H is a closed normal subgroup of H and the intersection
N∞ =⋂

i
Ni ⊂ H (89)

is the largest normal subgroup of G contained in H .

Proof The fact that Ni and N∞ are normal will depend on the following compu-
tation, related to the preceding paragraph. Let n ∈G , g ∈G and k ≥ 0. Assume that
Adn v = v +w(v) for any v ∈ g, with a corresponding w(v) ∈ nk . Then

Adg ng−1 v = Adg Adn(Adg−1 v) (90)

= Adg
(
Adg−1 v +w(Adg−1 (v))

)
(91)

= v +Adg (w(Adg−1 (v))). (92)

Now, to see that each group Ni is normal in H , note that if n ∈ Ni and g ∈ H
then the preceding computation shows that g ng−1 belongs to Ni if, and only
if, Adg (w(Adg−1 (v))) ∈ ni−1. By hypothesis, w(Adg−1 (v)) ∈ ni−1. By recurrence,
Adg (ni−1) ⊂ ni−1, showing that we have indeed Adg (w(Adg−1 (v))) ∈ ni−1.

It is clear that N∞ is well defined and is normal in H . We have to show it is also
normal in G . First, n∞ ⊂ g is an ideal. Indeed, by differentiation of Adn(v) = v+w(v)
along a path n(t ) we have [n, v] = w ′(v) and it belongs to to n∞ since w(v) does.

Since n∞ ⊂ g is an ideal and G is connected, the component of the identity of N∞
is normal in G . But then it implies Adg−1 n∞ = n∞. By the preceding computation it
implies Adg (w(Adg−1 (v))) ∈ n∞ and therefore that N∞ is indeed normal.

To complete the proof, we show that for a normal subgroup N ⊂ G contained
in H, N ⊂ N∞: by induction, N ⊂ H and if N ⊂ Ni so n ⊂ ni and therefore N ⊂{
n ∈ H | Adn v − v ∈ ni , ∀v ∈ g}= Ni+1. •

III—Principal bundles

Consider a smooth right free action
µ : P ×H → P (93)

of a Lie group H on a manifold P . We denote Rh the right action of H :
∀h ∈ H ,∀p ∈ P, Rh(p) =µ(p,h). (94)

Such an action µ is called proper if for any K1,K2 compact subsets of P , the set
{h ∈ H |Rh(K1)∩K2 6= ;} (95)
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is compact.
Let M be a manifold and H a Lie group. A (right) principal bundle

π : P → M (96)

consists of a manifold P with a right action µ by H which is locally trivial: for each
x ∈ M , there exists a trivialization over an open set U containing x

Ψ= (π,ψH ) : π−1(U ) →U ×H (97)

that is a diffeomorphism and such that
Ψ(µ(u,h)) = (π(u),ψH (u)h). (98)

A characterization of right actions which give rise to principal bundles is the
following.

Proposition III.1 Let µ : P ×H → P be a proper smooth right free action. Then
P�H is a smooth manifold with the quotient topology and it has a unique smooth
structure such that the projection P → P�H defines a right H -principal bundle.

Example Homogenous spaces are an important class of examples
π : G ×H →G�H (99)

where the right action µ : G ×H → G is the Lie group law:
µ(g ,h) = g h. (100)

This action is indeed proper. For if hi ∈ H and K1,K2 ⊂ G are compact, assume
that Rhi K1 ∩K2 6= ;. We need to prove that hi converge (up to a subsequence).
For each i , we have necessarily k1

i ∈ K1 and k2
i ∈ K2 such that Rhi k1

i = k2
i . But

both k1
i and k2

i converge (up to a subsequence) to k1 and k2 respectively. Hence
hi = (k1

i )−1k2
i converge (up to a subsequence) to k−1

1 k2. The limit lies in H since
it is closed.

Definition III.2 Let π1 : P1 → M1 and π2 : P2 → M2 be two right H -principal
bundles. A H -bundle diffeomorphism F : P1 → P2 is a diffeomorphism that preserves
the fibers and verifies F ◦Rh = Rh ◦F (it is right equivariant).

Since a H -bundle diffeomorphism preserves the fibers, it defines a diffeomor-
phism f : M1 → M2. Hence, following diagram commutes.

P1 P2

M1 M2

F

π1 π2

f

(101)

III.1 Ehresmann connections

Invariant vector fields With a right principal bundle P , one can consider a canonical
vector field V ∗ associated to any v ∈ h:

V ∗(p) = d

dt
Rexp(t v)p

∣∣∣∣
t=0

= Rexp(t v)∗(0,1)
∣∣
(p,0) . (102)

An alternative definition of V ∗ is the following. With µ : P ×H → P the right action,
we have

V ∗(p) =µ∗|(p,e)(0, v). (103)

For instance, in the case where P =G is a Lie group and H ⊂G , we get that V ∗ is
again the left-invariant vector field V ∗(p) = Lp∗(v).

Definition III.3 An Ehresmann connectionωH on P is a h-valued 1-form satisfying:
(1) for any h ∈ H , R∗

hωH = Ad(h−1)ωH ;
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(2) for any v ∈ h, ωH (V ∗) = v .

This definition restricts to theMaurer-Cartan form in the case where M collapses
to one point.

Note An equivalent formulation arises if we consider the distribution D defined
by the kernel of ωH . That distribution is an invariant horizontal distribution as
Rh∗D = D .

Lifting curves An Ehresmann connection defines a way to make a parallel displace-
ment along curves of M from the fiber at the origin of the curve to the fiber at the
end of the curve.

Let γ : [0,1] → M be a smooth path in M . Then there exists a unique lift γ̃ : [0,1] →
P such that

d

dt
γ̃(t ) ∈ kerωγ̃(t ) (104)

with an initial condition γ̃(0) = p .

Lemma III.4 Both conditions R∗
hωH = Ad(h−1)ωH and ωH (V ∗) = v are equivalent

to the following.
R∗
ψωH =ψ∗θH +Ad(ψ)−1ωH , (105)

where θH is the Maurer-Cartan form of H and ψ is any smooth function with values
in H .

To be entirely precise, ifψ : X → H is a smoothmap, then Rψ : P×X → P×H → P
and we state

R∗
ψωH (u, v)|(p,x) =ψ∗θH (v)|x +Ad(ψ(x))−1ωH (u)|p . (106)

Proof Since R∗
ψω is a differential form, we can consider separately vectors (u,0)

and (0, v) at (p, x) ∈ P ×X . Since Rψ =µ◦ (id×ψ) we only need to show the equiva-
lence with:

µ∗ω(u, v)|(p,h) = θH (v)+Ad(h)−1ω(u) (107)

since the precomposition by (id×ψ)∗ would follow.
With vectors (u,0)|(p,h), the product µ∗(u,0) is equal to Rh∗(u). Hence the pre-

ceding formula and the first condition are equivalent.
With vectors (0, v)|(p,h), the product µ∗(0, v) gives exactly V ∗(µ(p,h)) where V ∗

is the invariant vector field corresponding to θH (v). Hence the preceding formula
and the second condition are equivalent. •

III.2 Frame and coframe bundles

III.2.1 Some linear algebra

The linear group of matrices GL(n,R) does not act canonically on a vectorial space.
Indeed, an isomorphism GL(V ) ' GL(n,R) relies on the choice of one (or two) basis
of V .

However, GL(n,R) does act canonically on the spaces of the frames and coframes
of V . Let

F = {(e1, . . . ,en) is an ordered basis of V } . (108)

We say that F is the space of the frames of V .
We have a left action and a right action of GL(n,R) on F . It is defined by:

e ′i = g j
i e j = e j g j

i (109)
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where (g j
i ) is a matrix g ∈ GL(n,R). (We assume the Einstein summation conven-

tion.)
This left or right action on F corresponds to a right or left action on F∗, the space

of the coframes:
F∗ = {

(e1, . . . ,en) is an ordered basis of V ∗}
. (110)

This last action is given by:

e i ′ = e j bi
j = bi

j e j (111)

with (bi
j ) a matrix b ∈ GL(n,R). The correspondance with the action on F is deter-

mined by the relation e i ′(e j ) = δi
j :

e i ′(e j ) = ek bi
k (em g m

j ) = bi
k g k

j (112)

and the equation bi
k g k

j = δi
j shows that b = g−1 in GL(n,R).

The fact that the action on F by g becomes an action by g−1 on F∗ shows that if
g acts on the left (or respectively on the right) on F then g−1 acts on the right (or
respectively on the left) on F∗. (Indeed, observe (g h)−1 = h−1g−1.)

III.2.2 Bundles and the tautological form

Definition III.5 The frame bundle on a smooth manifold M is the set
F = {

(x,ω)
∣∣x ∈ M and ω is a frame of Tx M

}
. (113)

And the coframe bundle is:
F∗ = {

(x,ω)
∣∣x ∈ M and ω is a coframe of Tx M

}
. (114)

By the preceding considerations, each bundle F and F∗ is a left and right principal
GL(n,R)-bundle.

Note A reduction of the principal bundle F and F∗ to a subbundle (not necessarily
principal) corresponds generally to the choice of a geometric structure on M .

Definition III.6 A H -structure on a smooth manifold M is a principal subbundle
with fiber a closed subgroup H ⊂ GL(n,R).

Examples
(1) A Riemannian geometry on M , that is to say a Riemannian metric, corre-

sponds to the choice of a subbundle of orthonormal frames or coframes.
(2) A conformal geometry on M , that is to say a conformal class of Riemannian

metrics, corresponds to the choice of a subbundle of frames that are orthonor-
mal up to an homogeneous factor.

(3) A contact structure on a 3-manifold M , that is to say the data of an everywhere
non-integrable plane distribution D2 ⊂ TM corresponds to the choice of a
subbundle constituted of vectors (v1, v2, v3) such that (v1, v2) generates D2.

As a matter of fact, those three subbundles are principal. The first for the choice of
O(n) ⊂ GL(n,R), the second with R+O(n) ⊂ GL(n,R) and the last with P2 ⊂ GL(3,R)
the set of the matrices:

P2 =


? ? 0
? ? 0
? ? ?

⊂ GL(3,R). (115)
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With π : P → M a frame bundle, the previous identification p = (x,ω) allows to
define a tautological form θ : TP → Rn by:

θ|(x,ω)(v) =ω−1π∗(v). (116)

In contrast with the fact that the duality of Rn with its real forms is not canonical,
the duality ω 7→ω−1 of the frames with the coframes is canonical.

Consider the right action of H on P . Since Rh ◦π= π we get Rh∗π∗ = π∗. There-
fore:

R∗
hθ|(x,ω)(v) = θ|(x,ωh)(Rh∗v) = h−1ω−1π∗v (117)

and in the Lie group H ⊂ GL(n,R) ⊂ Aff(Rn), the left action by h−1 is equivalent to
the adjoint action by h−1. Thus:

Lemma III.7 Under the right action of H , the tautological form θ verifies:
R∗

hθ = Ad(h)−1θ. (118)

A section σ : M → P corresponds to the choice of a frame at each point x ∈ M .
Any other frame α is then determined by a right translation:

∀(x,ω) ∈ P, ω=σ(x)hσ(x,ω). (119)

A section σ is also called a moving frame.

We can nowdescribe Cartan’smethod to solve a first equivalence problemdescribed
as follows.

Let P1 →U1 and P2 →U2 be two framebundles for a same subgroup H ⊂ GL(n,R).
Assume that σ1 and σ2 are two sections. Under what condition a diffeomorphism
φ : U1 →U2 would be a geometric diffeomorphism? The fact that φ would preserve
the geometry would mean that φ∗σ1 would still be a moving frame on U2. This is
equivalent by definition to

φ∗σ1 = Rψσ2 (120)

⇐⇒ dφxσ1(x) =σ2(φ(x))ψ(x) (121)

for a certain smooth function ψ : U1 → H .
Cartan’s method is an interpretation of this equation at the level of the tautolog-

ical forms θ1 and θ2.

Proposition III.8 There exists a diffeomorphism φ : U1 →U2 satisfying
φ∗σ1 = Rψσ2 (122)

for a function ψ : U1 → H if, and only if, there exists a H -bundle diffeomorphism
φ̃ : P1 → P2 such that

φ̃∗θ2 = θ1. (123)

Proof Assume that φ verifies φ∗σ1 =σ2ψ.
We define a lift φ̃ by

φ̃ (x,σ1(x)h) = (
φ(x),dφxσ1(x)h

)
(124)

it is right equivariant, preserves the fibers and of course lifts φ. By lifting φ and
preserving the fibers we have π2∗φ̃∗ =φ∗π1∗.

Now,
φ̃∗θ2

∣∣
(x,σ1h) = θ2|(φ(x),dφxσ1(x)h) dφ̃

∣∣
(x,σ1h) (125)

= h−1σ1(x)−1 dφ−1
x π2∗ dφ̃

∣∣
(x,σ1h) (126)

= h−1σ1(x)−1 dφ−1
x dφxπ1∗ (127)

= h−1σ1(x)−1π1∗ (128)

= θ1|(x,σ1h) , (129)

hence φ̃∗θ2 = θ1.
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Conversely, a H -bundle diffeomorphism φ̃ would induce a diffeomorphism
φ : U1 →U2. But then φ̃ would send (x,σ1(x)) on a point (φ(x),σ2(φ(x))ψ(x))

θ1|(x,σ1(x) (v) = φ̃∗θ2
∣∣
(x,σ1(x)) (v) (130)

⇐⇒ σ1(x)−1π1∗v =ψ(x)−1σ2(φ(x))−1π2∗(dφ̃)(x,σ1(x))(v) (131)

=ψ(x)−1σ2(φ(x))−1 dφxπ1∗v (132)

⇐⇒ σ1(x)−1 =ψ(x)−1σ2(φ(x))−1 dφx (133)

⇐⇒ dφxσ1(x) =σ2(φ(x))ψ(x). (134)

And this is equivalent to φ∗σ1 = Rψσ2. •

III.3 Parallel translation

If one puts together an Ehresmann connection on a frame bundle, then one has
the very first example of a Cartan connection. Those would be defined later in
generality. But we can make the following observation without directly mentioning
Cartan connections.

Let P → M be a frame bundle. The tautological form θ expresses how a point in
M moves relatively to the choice of a moving frame. But the way that the moving
frame itself evolves is not measured by θ.

This corresponds to the fact that even if θ defines a basis of Tx M at every point,
it is not the case in Tp P .

If ωH is an Ehresmann connection, then one gets a basis of Tp P by putting to-
gether both ωH and θ. Indeed, note that θ vanishes along the fiber H (since it is
a transformation combined with π∗) but ωH is injective along Tp H .

Let σ= (X1, . . . , Xn) be a moving frame around x ∈ M . It defines a section pσ(x) =
(x,σ(x)) of P → M . Assume that ωH is an Ehresmann connection.

Since σ = (Xi ) defines a section of π : P → M on an open U ⊂ M . One has an
identification π−1(U ) = U × H by the right action of H on σ. In particular, any
tangent vector X ∈ TU can be identified uniquely to (X ,0) ∈ T(U ×H).

Therefore, on a section, ωH (X ) is well defined, with the implicit mapping X 7→
(X ,0) allowing X to be a tangent vector in P . Note that this construction heavily
depends on the choice of the section σ.

A parallel translation (in other words, an affined connection) is then determined
by:

∇X Xi =ωH (X ) ·ei (135)

where ωH (X ) acts on Xi by the adjoint action.
By writing coordinates of the matrix group H , ωH =∑

ωk
mek ⊗ em and

∇X Xi =
∑
ω

j
i (X )X j . (136)

IV—Cartan geometries

DefinitionIV.1 ACartan geometry ismodeled on (g,h) is a right H -principal bundle
P → M together with a 1-form ωP : TP → g, called a Cartan connection, verifying:

(1) at each p ∈ P , ωP is an isomorphism Tp P → g;
(2) for all h ∈ H , R∗

hωP = Ad(h)−1ωP ;
(3) for all v ∈ h and V ∗ the corresponding invariant vector field, ωP (V ∗) = v .
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Note A Cartan connection furnishes a parallelism of P since Tp P ' g by ωP . Hence
TP ' P × g.

Definition IV.2 The homogeneous space G�H is reductive if there exists a linear
decomposition

g= h⊕p (137)

such that p is Ad(H)-invariant.

Note In such case, one can identify pwith the tangent space at M . Indeed, for p ∈ P ,
with Tp P ' h⊕p, the subspace p is preserved by the right action of the fiber since
R∗

hp = Ad(h)−1p = p. Hence, by pushing with π∗, it furnishes an identification of
Tπ(p)M with p.

However, even if p can be identified with Tπ(p)M , this identification is not invari-
ant by the right action on the fiber. It acts by Ad(H)−1 that is not trivial in general.

When a homogenous space is reductive, one can decompose a Cartan connection
ω that has values in g along h and p, that is to say ω=ωh+ωp. The factor ωh is then
an Ehresmann connection.

By the same proof as in the case of an Ehresmann connection (see III.4 (p. 15)), we
have:

Lemma IV.3 The two last conditions are equivalent to:
R∗
ψωP =ψ∗θH +Ad(ψ)−1ωP , (138)

where θH is the Maurer-Cartan form of H and ψ is any smooth function with values
in H .

Definition IV.4 The curvature of a Cartan geometry is
Ω(u, v) = dω(u, v)+ [ω(u),ω(v)]. (139)

If Ω= 0 on TP , then we say that the Cartan geometry is flat.

Homogeneous spaces The simplest example of a Cartan geometry is the fiber bundle
G →G�H equipped with its Maurer-Cartan form θG . In this case Ω= dθG + 1

2 [θG ∧
θG ] = 0 is the structural equation.

Lemma IV.5 If ψ is any smooth functions with values in H then
R∗
ψΩ= Ad(ψ)−1Ω. (140)

Proof As noted previously, we know R∗
ψωP .

R∗
ψΩ= R∗

ψ

(
dωP + 1

2
[ωP ∧ωP ]

)
(141)

= dR∗
ψωP + 1

2

[
R∗
ψωP ∧R∗

ψωP

]
(142)

=ψ∗ dθH + 1

2

[
ψ∗θH ∧ψ∗θH

]+Ad(ψ)−1
(
dωP + 1

2
[ω∧ωP ]

)
(143)

=ψ∗0+Ad(ψ)−1Ω (144)

•

Lemma IV.6 The curvature Ω(u, v) vanishes if u or v is tangent to the fiber (belongs
to Tp H ⊂ Tp P ).
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Proof Assume that u ∈ Tp H . Let ψ : P → H be such that ψ(p) = e and ψ∗(u) =
−ωP u. Then

R∗
ψωP (u)

∣∣∣
p
=ψ∗θH +Ad(ψ(p))−1ωP (u) (145)

=−ωP (u)+ωP (u) = 0 (146)

hence Rψ∗(u) = 0 and we get
Ad(ψ)−1Ω(u, v) =Ω(Rψ∗u,Rψ∗v) =Ω(0,Rψ∗v) = 0. (147)

•

IV.1 Example 1: Riemannian geometry

As one can anticipate, a Cartan connection on a Riemannian geometry will coin-
cide with the consideration of a certain Ehresmann connection together with the
tautological form. But as usual in Riemannian geometry, one can consider many
connections. Only one will have vanishing torsion. It is that property that will
determine the corresponding Ehresmann connection.

We startwith a description of Eucl(n), the group of the isometries of the Euclidean
space. This space is the model for the Riemannian geometry. By the identification
Eucl(n) = Rn oO(n), one can represent Eucl(n) → GL(n +1,R) by

(x, f ) 7→
(

f x
0 1

)
. (148)

So the Lie algebra is:

eucl(n) =
(
o(n) Rn

0 1

)
. (149)

An important observation is that the adjoint action by an orthonormal element
is a left translation on the Rn coordinate:(

A 0
0 1

)(
b v
0 0

)(
AT 0
0 1

)
=

(
Ab AT Av

0 1

)
. (150)

The adjoint action on the Lie algebra is:[(
a u
0 0

)
,

(
b v
0 0

)]
=

(
[a,b] av −bu

0 0

)
. (151)

The Maurer-Cartan form θEucl can be written:

θEucl = g−1 dg =
(
θO(n) θRn

0 0

)
. (152)

And the structural equation becomes(
dθO(n) + 1

2

[
θO(n) ∧θO(n)

]
dθRn + [

θO(n) ∧θRn
]

0 0

)
=

(
0 0
0 0

)
. (153)

We will describe the (Levi-Civita) Cartan connection ωP decomposed as:

ωP =
(
ωO(n) ωRn

0 0

)
(154)

And since Eucl(n)�O(n) is a frame bundle, we start by setting ωRn = θ the tauto-
logical form.

Along any local section σ : U → P , we get a trivialisation π−1(U ) =U ×H . Since θ
vanishes on vertical vectors, that is to say on vectors tangent to each fiber H , so does
dθ. But θ is a base of forms on U . Therefore, there exist numbers ai

j k such that

dθi =∑
j k

ai
j kθ

j ∧θk . (155)

By exterior derivative, the numbers ai
j k verify ai

j k = −ai
k j .
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This construction is independent from the choice of the section. Since dθi is
a differential 2-form on TP , the existence and unicity of the numbers ai

j k is unam-
biguous.

The goal is to define a 1-form ω = ωO(n) verifying
dθ =−[ω∧θ] (156)

in order to verify the Rn-factor of the structural equation. It is that condition that
will prove the unicity of the (Levi-Civita) Cartan connection.

Let ω = ∑
ωi

j ei ⊗ e j be defined by the numbers

ωi
j =

∑
k

(
ai

j k +a j
ki −ak

i j

)
θk . (157)

Then ω is indeed o(n)-valued since ωi
j is anti-symmetric:

ω
j
i =

∑
k

(
a j

i k +ai
k j −ak

j i

)
θk =∑

k
−

(
ai

j k +a j
ki −ak

i j

)
θk . (158)

And it verifies dθ = −[ω∧θ] since:∑
j
−ωi

j ∧θ j =∑
j
θ j ∧ωi

j =
∑
j k

(
ai

j k +a j
ki −ak

i j

)
θ j ∧θk (159)

=∑
j k

ai
j kθ

j ∧θk + ∑
j<k

((
a j

ki −ak
i j

)
−

(
ak

j i −a j
i k

))
θ j ∧θk

(160)

= dθi +0 = dθi . (161)

The solutionω is unique. Indeed, if γwere another solution verifying dθi =−γi
j ∧

θ j , then ω−γ would again be solution and it would show that (ωi
j −γi

j )∧θ j = 0.
But a transformation α ∈ o(n) acts trivially by the adjoint action on Rn if and only
if α = 0. In this case, it gives ωi

j −γi
j = 0.

Now that we have ω, we can show that together with θ it defines a Cartan con-
nection. In fact, this connection is exactly the Levi-Civita connection.

Lemma IV.7 The form

ωP =
(
ω θ

0 0

)
(162)

is a Cartan connection.

Proof The form θ is certainly surjective on Rn ⊂ eucl(n) = o(n)⊕Rn . If we show that
ωP (V ∗) = v for any v ∈ o(n) thenwewill have shown thatωP is a linear isomorphism
at each Tp P . So we need to prove the two last conditions to be a Cartan connection.

First let h ∈ O(n). We have proven by lemma III.7 (p. 17) that R∗
hθ = Ad(h)−1θ. So

we need to prove this statement on ω.
0 = R∗

h (dθ+ [ω∧θ]) = R∗
h dθ+ [

R∗
hω∧R∗

hθ
]

(163)

= dAd(h)−1θ+ [
R∗

hω∧Ad(h)−1θ
]

(164)

= Ad(h)−1 dθ+Ad(h)−1 [
Ad(h)R∗

hω∧θ]
(165)

= dθ+ [
Ad(h)R∗

hω∧θ]
(166)

But ω is the unique solution to dθ+ [ω∧θ] = 0. Hence
Ad(h)R∗

hω=ω ⇐⇒ R∗
hω= Ad(h)−1ω. (167)

Next, we prove that ωP (V ∗) = v for any v ∈ o(n). This statement is equivalent to
ω(V ∗) = v since θ takes its values in Rn . Recall that:

V ∗(p) = d

dt
Rexp(t v)p

∣∣∣∣
t=0

= Rexp(t v)∗(0,1)
∣∣
(p,0) . (168)
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Let ψ(t ) = exp(t v). We redo the previous computation. This time:
dAd(ψ)−1θ = d(Ad(ψ)−1)∧θ+Ad(ψ)−1 ∧dθ (169)

= Ad(ψ)−1 [−ψ∗θO(n) ∧θ
]+Ad(ψ)−1 ∧dθ (170)

hence
0 = dAd(ψ)−1θ+

[
R∗
ψω∧Ad(ψ)−1θ

]
(171)

= Ad(ψ)−1
(
dθ−

[
Ad(ψ)R∗

ψω−ψ∗θO(n) ∧θ
])

. (172)

It gives:
R∗
ψω=ψ∗θO(n) +Ad(ψ)−1ω (173)

hence when t = 0:
R∗
ψω

∣∣∣
t=0

(0,1) =ω(V ∗) (174)

= θO(n)(ψ
′(0))+Ad(ψ(0))−1ω(0) = v. (175)

•

Now that we have the (Levi-Civita) connection, we can compute its curvature.
Recall that by construction, the Rn part of the curvature vanishes since dθ+[ω∧θ] =
0. The curvature is therefore:

Ω=
(

dω+ 1
2 [ω∧ω] 0
0 0

)
. (176)

Recall that Ω vanishes on the vectors tangent to the fiber. So it only depends on
the tautological form θ. Hence there exists numbers R i

j kl such that

Ω=∑
i j

W i
j ei ⊗e j , (177)

W i
j =

∑
kl

R i
j klθ

k ∧θl . (178)

IV.2 Example 2: web geometry

Web geometries on R2 are a way to study the geometry of differential equations
dy = F (x, y)dx. (179)

Definition IV.8 A web on R2 is the data of three line distributions L1,L2,L3 ⊂ TR2

such that any two are linearly independent at each point.

By duality, a line corresponds to a kernel of a form: L1 = kerα1. Since lines are
not parametrized by specific vectors, α1 and λα1 generate the same line L1.

Hence, by rescaling, since α3 =λα1 +µα2, we can assume that α3 =α1 −α2.

Definition IV.9 A coframe of a web on R2 is the data of three 1-forms α1,α2,α3 ∈
T∗R2 such that any two are linearly independent at each point and α3 =α1 −α2.

Hence a coframe is in fact the data of only α1 and α2. So it is indeed a coframe
of R2. The bundle of all coframes of a web on R2 is a R∗-principal bundle.

Indeed, if α1 becomes λ1α
1 and α2 becomes λ2α

2 then λ1α
1 −λ2α

2 must still
be proportional to α3, hence λ1 = λ2.

Flat model A flat model for this geometry is given by α1 = dy , α2 = dx and the
third form α3 = dy −dx . We admit that the invariance group is exactly G = R2oR∗
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where R2 acts by translation and the isotropy H = R∗ by dilation. A representation
of G → GL(3,R) is given by:

(x, y,λ) 7→
λ 0 0

0 λ 0
x y 1

 . (180)

One can check that in this representation,

Ad(λ−1)(x, y) =
 0 0 0

0 0 0
xλ yλ 0

 , (181)

[λ∧ (x, y)] =
 0 0 0

0 0 0
x ∧λ y ∧λ 0

 . (182)

The torsion free Cartan connection With any section α we define the tautological
form θ on TP with P → R2 the R∗-coframe bundle by

θ|αλ(v) =α(π∗(v))λ= (π∗αλ)(v). (183)

Since α = (α1,α2) is defined on TR2,
dα=α∧ (τ1,τ2) = (α1 ∧τ1,α2 ∧τ2) (184)

where τ1 and τ2 are two 1-forms defined on TR2. Hence each τi = τi
1α

1+τi
2α

2. Since
we impose the value αi ∧τi , only one of two components of τi is determined and
we can assume that τ1 = τ2 such that dα= α∧τ with τ= (τ1,τ1).

Now, with θ = π∗αλ,
dθ =π∗ ((dα)λ−α∧dλ) (185)

=π∗ (
αλ∧τ−αλ∧λ−1 dλ

)
(186)

= θ∧π∗τ−θ∧λ−1 dλ (187)

= θ∧ (
π∗τ−λ−1 dλ

)
(188)

and we set
ω=λ−1 dλ−π∗τ (189)

and one should note that λ−1 dλ is the Maurer-Cartan form of the fiber H = R∗.
Therefore, with

ωP =

ω 0 0
0 ω 0
θ1 θ2 0

 (190)

we can check that ωP is indeed a Cartan connection and is unique by verifying
dθ+ [ω∧ θ] = 0.

The curvature form is determined by:

Ω=π∗
−dτ 0 0

0 −dτ 0
0 0 0

 . (191)

Note that this curvature form is defined by the value of −dτ on the basis and
−dτ = Kα1 ∧α2. It is known as the Blaschke-Chern curvature.

Application Consider the equation
dy = F (x, y)dx (192)
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it furnishes a web
α1 = dy, (193)

α2 = F (x, y)dx, (194)

α3 = dy −F (x, y)dx =α1 −α2 (195)

where F (x, y) does not vanish.
By following the method, we differentiate (α1,α2). It gives:

dα1 = 0 (196)

dα2 = ∂F

∂y
dy ∧dx (197)

= 1

F

∂F

∂y
dy ∧α2 (198)

and it determines τ by verifying dα = α∧τ:
τ=− 1

F

∂F

∂y
dy. (199)

Hence, the Blaschke-Chern curvature is:

−dτ= ∂

∂x

(
1

F

∂F

∂y

)
dx ∧dy (200)

= 1

F

(
∂2F

∂x∂y
− 1

F

∂F

∂x

∂F

∂y

)
dx ∧dy (201)

= −1

F 2

(
∂2F

∂x∂y
− 1

F

∂F

∂x

∂F

∂y

)
α1 ∧α2. (202)

For instance, it vanishes for any F (x, y) linear in x and y , or any F independent
from x or y . It does not vanish with F (x, y) = sin(x y). Indeed:

∂2F

∂x∂y
=−x y sin(x y)+cos(x y), (203)

1

F

∂F

∂x

∂F

∂y
= x y

cos(x y)2

sin(x y)
. (204)

IV.3 Example 3: path geometry

The model space for path geometry is G�H where G = SL(3,R) and H = B , the so
called Borel subgroup of G of upper triangular matrices. It can be realized as a flag
manifold F12, the space of complete flags in R3.

Definition IV.10 Le M be a real three dimensional manifold and TM be its tangent
bundle.

(1) A path structure L = (E 1,E 2) on M is a choice of two line sub-bundles E 1 and
E 2 in TM , such that E 1 ∩E 2 = {0} and E 1 ⊕E 2 is a contact distribution.

(2) A strict path structure T = (E 1,E 2,θ) on M is a path structure with a fixed
contact form θ such that kerθ = E 1 ⊕E 2.

(3) A (local) automorphism of (M ,T ) is a (local) diffeomorphism f of M that
preserves E 1, E 2 and θ.

The condition that E 1 ⊕E 2 be a contact distribution means that, locally, there
exists a one form θ on M such that kerθ = E 1 ⊕E 2 and θ∧dθ is never zero. On the
other hand, for strict path structures we impose the existence of a globally defined
contact form θ. Therefore, strict path structures are unimodular geometries: there
exists a canonical volume form µT = θ∧dθ on M , preserved by the automorphism
group of T (in contrast, path structures are not unimodular).
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There exists a unique vector field R such that dθ(R, ·) = 0 and θ(R) = 1, called the
Reeb vector field of θ, that we will also call the Reeb vector field of the strict path
structure T . In particular, the distribution E 1 ⊕E 2 of a strict path structure T is
thus oriented, and the manifold M supporting T is orientable.1

Flat path model Flat path geometry is the geometry of real flags in R3. That is the
geometry of the space of all couples (p, l ) where p ∈ RP 2 and l is a real projective
line containing p . The space of flags is identified to the quotient

SL(3,R)�B (205)

where B is the Borel group of all real upper triangular matrices.

Flat strict path model The Heisenberg group Heis(3) is the flat model for the strict
path geometry. With

Heis(3) = {
(x, y, t ) ∈ R3} (206)

and the multiplication defined by (x1, y1, t1) · (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 +
2(x1 y2 − x2 y1)). We consider the left invariant distributions determined by their
value at the origin:

E1 = ∂

∂x
and E2 = ∂

∂y
(207)

and it has a global corresponding contact form:
θ = dt −x dy − y dx. (208)

IV.3.1 Path structures and second order differential equations

A second order differential equation in one variable is described locally as
d2 y

dx2 = F

(
x, y,

dy

dx

)
. (209)

With p = dy
dx , this defines a path structure on a neighborhood of a point in R3 with

coordinates (x, y, p):
E1 = ker(dy −p dx)∩ker(dp −F dx), (210)

E2 = ker(dx)∩ker(dy). (211)

The contact structure is defined by the form
θ = dy −p dx. (212)

By defining the forms Z 1 = dx and Z 2 = dp −F dx , one has that dθ = Z 1 ∧Z 2.

One can show that every path structure is, in fact, locally equivalent to a second
order equation. That is, there exists local coordinates such that E1 and E2 are
defined via a second order differential equation as above.

For, one first finds coordinates such that E2 = kerdx ∩ kerdy by the flowbox
theorem. Forms which annihilate E2 +E1 should be described by q dx + p dy , for
functions q and p . Without loss of generality, one can assume locally that dx+p dy
and using the contact condition one concludes that x, y, p are local coordinates.
Then E1 = ker(γdp +β(dy −G dx))∩ ker(dy − p dx) and one lets, without loss of
generality, β = 0 and α = 1.

1If the contact distribution is oriented, then there exists a global contact form. Indeed, using
a global metric on the distribution one can define locally a transversal vector to the distribution
taking a Lie bracket of orthonormal vectors in the distribution. This defines a global 1-form.
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Local equivalence (also called point equivalence) between path structures happens
when there exists a local diffeomorphism which gives a correspondence between
the lines defining each structure.

One can choose a contact form θ up to a scalar function and interpret this as
follows: one has a R∗-bundle over the manifold given by the choice of θ at each
point (one might keep only positive multiples for simplicity). Over this line bundle
one defines the tautological form ωθα = π∗θα. This bundle is trivial if and only if
there exists a global contact form θ.

Let θ and local forms Z 1 and Z 2 defining the lines as above such that θ = Z 1∧Z 2.
There exists global forms Z 1 and Z 2 if and only if there exists global vector fields
along the lines. Clearly, if the contact distribution is oriented, it suffices that there
exists a global vector field along one of the foliations by lines. Most of the three-
dimensional Lie groups have left invariant path structures with global forms.

IV.3.2 Examples

Example 1 Consider the Heisenberg group
Heis(3) = {(z, t ) ∈ C×R} (213)

with multiplication defined by (z1, t1) · (z2, t2) = (z1 + z2, t1 + t2 + 2Im z1z2). The
contact form

θ = dt −x dy − y dx (214)

is invariant under left multiplications (also called Heisenberg translations). If Λ⊂
Heis(3) is a lattice then the quotientΛ�Heis(3) is a circle bundle over the torus with
a globally defined contact form.

A lattice Λ determines a lattice Γ ⊂ C corresponding to the projection in the
exact sequence

{0} → R → Heis(3) → C → {0}. (215)

There are many global vector fields in the distribution defined by θ and invariant
underΛ, it suffices to lift a vector field on C invariant under Γ. All circle bundles ob-
tained in this way are not trivial and the fibers are transverse to the distribution.

Example 2 We consider the torus T 3 with coordinates (x, y, t ) ∈ R�Z
3
and the global

contact form
θn = cos(2πnt )dx − sin(2πnt )dy. (216)

There are two canonical global vector fields on the distribution given by
∂

∂t
and sin(2πnt )

∂

∂x
+cos(2πnt )

∂

∂y
. (217)

In this example, the fiber given by the coordinate t has tangent space contained
in the distribution.

Example 3 An homogeneous example is the Lie group SU(2) with left invariant
vector fields X and Y with Z = [X ,Y ] and cyclic commutation relations. The vector
fields X and Y define a path structure on SU(2).

Example 4 Another homogeneous example is the Lie group SL(2,R) with left invari-
ant vector fields X and Y with Z = [X ,Y ] with [Z , X ] = X and [Z ,Y ] = −Y given
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by the generators in sl(2):

X =
(
0 1
0 0

)
(218)

Y =
(
0 0
1 0

)
(219)

Z =
(
1 0
0 −1

)
. (220)

The path structure defined by X and Y induces a path structure on the quotient

Γ�SL(2,R) by a discrete torsion free subgroupΓ⊂ SL(2,R). This structure is invariant
under the flow defined by right multiplication by e t Z .

Example 5 Let Σ be a surface equipped with a Riemannian metric. The geodesic
flow on its unit tangent bundle T1Σ defines a distribution which, together with the
distribution definedby the vertical fibers of the projection of the unit tangent bundle
on Σ, defines a path structure which is not invariant under the geodesic flow. For
Σ = H2

R, the hyperbolic upper plane, we obtain T1Σ = PSL(2,R) with distributions
defined by the left invariant distributions X −Y and Z (using the same generators
of the Lie algebra sl(2) as in the previous example).

IV.3.3 Path structures with a fixed contact form

We now go back to strict path structures, by considering the specific case of Car-
tan geometries modeled on Heis(3), the flat model of strict path structures. So G
denotes from now on the subgroup of SL(3,R) defined by

G =


a 0 0

x 1
a2 0

z y a


∣∣∣∣∣∣∣a ∈ R∗, (x, y, z) ∈ R3

 (221)

and H ⊂ G the isotropy subgroup of G defined by

H =


a 0 0

0 1
a2 0

0 0 a


 . (222)

The Heisenberg group is identified to:

Heis(3) =


1 0 0
x 1 0
z y 1

 . (223)

The semidirect structure G = Heis(3)oH is described by the action of H on Heis(3)
by conjugation:

1
a

a2

1
a


1

x 1
z y 1


a

1
a2

a

=

 1
a3x

z 1
a3 y 1

 . (224)

Writing the Maurer-Cartan form of G as the matrixw 0 0
θ1 −2w 0
θ θ2 w

 (225)
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one obtains the structural equations:
dθ+θ2 ∧θ1 = 0

dθ1 −3w ∧θ1 = 0

dθ2 +3w ∧θ2 = 0

dw = 0.

(226)

Let M be a three-manifold equipped with a strict path structure T = (E 1,E 2,θ)
with Reeb vector field R . Now let X1 ∈ E 1, X2 ∈ E 2 be such that dθ(X1, X2) = 1.
The dual coframe of (X 1, X 2,R) is (α1,α2,θ), with two 1-forms α1 and α2 verifying
dθ = α1 ∧α2.

At any point x ∈ M , any coframe (θ1,θ2,θ) verifying dθ = θ1 ∧θ2 is of the form

θ1 = a3α1, θ2 = 1

a3 θ
2 (227)

with a a function with values in R∗.

Definition IV.11 We denote by π : P → M the right R∗-coframe bundle over M
given by the set of coframes (θ1,θ2,θ).

We will denote the tautological forms defined by θ1, θ2 and θ by using the same
letters. That is, we write θi = π∗θi .

Proposition IV.12 There exists a unique Cartan connection on P → M

ω=

w 0 0
θ1 −2w 0
θ θ2 w

 (228)

such that its curvature form is of the form

Ω= dω+ 1

2
[ω∧ω] =

 dw 0 0
θ∧τ1 −2dw 0

0 θ∧τ2 dw

 (229)

with τ1 ∧θ2 = τ2 ∧θ1 = 0.

Observe that the condition τ1 ∧θ2 = τ2 ∧θ1 = 0 implies that we may write τ1 =
τ1

2θ
2 and τ2 = τ2

1θ
1.

Proof We differentiate the tautological forms. One obtains with θ1 = a3α1:
dθ1 = 3a2 da ∧α1 +a3 dα1 (230)

=−3θ1 ∧ da

a
+a3 (

v1 ∧α1 +b1θ∧α2) (231)

for a certain function b1 and a 1-form v1 defined on M . Rearranging terms we
obtain

dθ1 =−3θ1 ∧
(

da

a
− v1

)
+a6b1θ∧θ2. (232)

Analogously we have

dθ2 = 3θ2 ∧
(

da

a
+ v2

)
+ b2

a6 θ∧θ1. (233)

Observe now that by differentiating dθ =α1 ∧α2 one obtains that
d2θ = 0 = dα1 ∧α2 −α1 ∧dα2 (234)

=α1 ∧ v1 ∧α2 −α1 ∧α2 ∧ v2. (235)

This implies that the term in θ of v1 and v2 only differ by a sign. One can therefore
define a unique w by adding to da

a − v1 the term in v2 which is proportional to θ2.
Unicity of this construction follows easily from Cartan’s lemma. The verification

that it is actually a Cartan connection is left to the reader. •
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An example with constant curvature Consider SL(2,R) with its left invariant vector
fields defined by a Lie algebra basis (E ,F, H) of sl(2) with [E ,F ] = H , [H ,E ] = 2E
and [H ,F ] = −2F . Explicitly:

E =
(
0 1
0 0

)
(236)

F =
(
0 0
1 0

)
(237)

H =
(
1 0
0 −1

)
. (238)

The structural equations of SL(2,R) for a dual basis α1,α2,θ are:
dθ+α1 ∧α2 = 0

dα1 −2α1 ∧θ = 0

dα2 −2θ∧α2 = 0.

(239)

Indeed, note that:(
θ α1

α2 −θ
)
∧

(
θ α1

α2 −θ
)
=

(
α1 ∧α2 −2α2 ∧θ
−2θ∧α2 −α1 ∧α2

)
. (240)

Now, we define a strict path structure on SL(2,R). At any point, we do a left
translation (by SL(2,R)) of (RF,RE , H). It defines a path structure. It is strict with
the left translation of θ. The tautological forms are θ, θ1 = a3α2 and θ2 = a−3α1.

We can now compare with the previous proposition and the structural equations
of the strict path geometry. That is to say, we compare the two sets of equations:

dθ+α1 ∧α2 = 0

dα1 −2α1 ∧θ = 0

dα2 −2θ∧α2 = 0

and


dθ+θ2 ∧θ1 = 0

dθ2 +3w ∧θ2 = θ∧τ2

dθ1 −3w ∧θ1 = θ∧τ1.

(241)

We read those equations in the section (α1,α2,θ). The first equation of both
systems is indeed verified:

dθ+θ2 ∧θ1 = dθ+α1 ∧α2 = 0. (242)

The equations in second position:
dα1 −2α1 ∧θ = 0 and dθ2 +3w ∧θ2 = θ∧τ2 (243)

show that τ2 = 0 and w must be 2
3θ along the section (α1,α2,θ). The last equations

shows that τ1 = 0 and w is again 2
3θ.

As a consequence, the strict path structure on SL(2,R) has curvature:

Ω=


2
3θ

2 ∧θ1 0 0

0 −2
3θ

2 ∧θ1 0

0 0 2
3θ

2 ∧θ1

 . (244)

One can think of SL(2,R) with the above strict path structure as a constant curva-
turemodel. Observe that one can vary the curvature by choosing differentmultiples
of H . The curvature sign corresponds then to different choices of orientation.

The automorphism group of this structure is SL(2,R)×R∗. The action is through
left translations by SL(2,R) and right translations by R∗ identified to the one pa-
rameter subgroup {(

e t 0
0 e−t

)∣∣∣∣ t ∈ R
}

(245)

Indeed, this group acts simply transitively on the adapted coframe bundle P over
SL(2,R) and preserves the connection.
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IV.4 Isomorphisms of Cartan geometries

Definition IV.13 Let P1 → M1 and P2 → M2 be two Cartan geometries modeled
on a same (g,h) with respective connections ω1 and ω2. A geometric isomorphism
is a diffeomorphism f : M1 → M2 covered by a H -equivariant map F : P1 → P2 such
that ω1 = F∗ω2.

PropositionIV.14 A geometric isomorphism f : M1 → M2 between effective Cartan
geometries modeled on (g,h) determines a unique H -equivariant lift F : P1 → P2 such
that F∗ω2 =ω1.

Proof We show the statement by assuming that f : M1 → M1 is the identity map.
Otherwise, we could compose f with f −1 and take as lift a first lift F composed with
a second lift G−1.

Let F : M1 → M1 be lifting the identity and assume that F∗ω1 =ω1. Wemust have
F (p) = Rψ(p)(p) since it lifts the identity. Hence

ω1 = F∗ω1 = R∗
ψω1 (246)

=ψ∗θH +Ad(ψ)−1ω1 (247)

⇐⇒ Ad(ψ)−1ω1 −ω1 =−ψ∗θH . (248)

We show that this implies thatψ has values in a normal subgroup of G . It will im-
plyψ∼= e since the space is effective. We do this by induction, following proposition
II.23 (p. 13).

It is clear that ψ(P1) ⊂ H = N0. Hence we suppose that ψ(P1) ⊂ Ni . Since
−ψ∗θH (v) = θH (ψ∗v) ∈ ni , we have ψ(P1) ⊂ Ni+1. •

IV.5 Bianchi identities

The derivative of the curvature gives a Bianchi identities.

Lemma IV.15 Let P → M be a Cartan geometry and ωP its connection. We have
dΩ= [Ω∧ωP ]. (249)

Proof We differentiate by definition of the curvature.

dΩ= d

(
dωP + 1

2
[ωP ∧ωP ]

)
(250)

= 1

2
d[ωP ∧ωP ] (251)

= 1

2
([dωP ∧ωP ]− [ωP ∧dωP ]) (252)

= [dωP ∧ωP ] (253)

=
[(
Ω− 1

2
[ωP ∧ωP ]

)
∧ωP

]
(254)

= [Ω∧ωP ]− 1

2
[[ωP ∧ωP ]∧ωP ] (255)

= [Ω∧ωP ] (256)

Indeed, [[ωP ∧ωP ]∧ωP ] = 0 by using the Jacobi identity. •
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In Riemannian geometry This Bianchi identity gives the two usual Bianchi identities.
Indeed, with the (Levi-Civita) Cartan connection constructed above,

ωP =
(
ω θ

0 0

)
, (257)

we have

Ω=
(
W 0
0 0

)
(258)

and hence

dΩ=
(
dW 0

0 0

)
= [Ω∧ωP ] =

(
W ∧ω W θ

0 0

)
. (259)

On the Rn factor we retrieve the first Bianchi identity:
W θ = [W ∧θ] = 0 (260)

and on the o(n) factor we get the second:
dW =W ∧ω. (261)

IV.6 Mutations

Definition IV.16 Let P → M be a Cartan geometry modeled on (g,h). Its torsion is
the projection of the curvature Ω by g→ g�h.

Note When the model space is reductive, that is to say there exists p that is Ad(h)-
invariant and g = h⊕p, then the torsion is the p factor of Ω.

Example In Riemannian geometry the torsion vanishes exactly for the Levi-Civita
connection. It is indeed what we constructed by asking dθ+ [ω∧θ] = 0.

DefinitionIV.17 Let (g1,h) and (g2,h) be two geometric pairs sharing a same group
H corresponding to h and having two respective adjoint representations Ad1 : H →
Aut(g1) and Ad2 : H → Aut(g2).

A mutation is a linear isomorphism
λ : g1 → g2 (262)

such that
(1) for all h ∈ H and u ∈ g1, λ(Ad1(h)(u)) = Ad2(h)(λ(u));
(2) λ|h is the identity;
(3) in g�h, we have λ([u, v]) = [λ(u),λ(v)].

Examples The three constant curvature models for the Riemannian geom-
etry are mutations. Let Rn = Eucl+(n)�SO(n), Sn = SO(n +1)�SO(n) and
H n

R = SO(n,1)�SO(n). The three Lie algebras so(n + 1),so(n,1) and eucl(n) are
decomposed into so(n)⊕Rn . Note that so(n) is the Lie algebra of a shared isotropy
H = SO(n). Let A ∈ so(n) and v ∈ Rn . Then the mutations are deduced from the
three following representations.

eucl(n) =
{(

A v
0 0

)}
(263)

so(n +1) =
{(

A v
−t v 0

)}
(264)

so(n,1) =
{(

A v
t v 0

)}
(265)
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Proposition IV.18 Let (g1,h) and (g2,h) be two geometric pairs with a mutation
λ : g1 → g2.

If P → M is a Cartan geometry modeled on (g1,h) with Cartan connection ω1 then
ω2 =λ◦ω1 (266)

gives a Cartan connection for P → M modeled on (g2,h). Furthermore, the curvature
Ω1 becomes:

Ω2 =λ◦Ω1 + 1

2
([ω2 ∧ω2]−λ[ω1 ∧ω1]) . (267)

Proof Since λ is an isomorphism, ω2 is a linear isomorphism at each point:
Tp P → g2. It verifies the other properties since on the equivalent property we have:

R∗
ψω2 = (λ◦ω1)(Rψ∗) (268)

=λ(
ψ∗θH +Ad1(ψ)−1ω1

)
(269)

=ψ∗θH +Ad2(ψ)−1λ◦ω1 (270)

=ψ∗θH +Ad2(ψ)−1ω2. (271)

The identity on Ω2 follows by definition. •

Note If Ω1 has vanishing torsion then Ω2 does too since λ preserves h.

Definition IV.19 Let P → M be a Cartan geometry with connection ωP and
curvature Ω. We define its curvature function

K : P ×g×g→ g (272)

by
K (u, v)|p =Ω(

ω−1
P (u)|p ,ω−1

P (v)|p
)

. (273)

In fact, since Ω vanishes on h, we have a factorisation:
K : P ×g�h×g�h→ g. (274)

Note The curvature function K has values in h if, and only if, Ω has vanishing
torsion.

Lemma IV.20 If Ω has vanishing torsion then K (K (u, v), w) = 0.

Definition IV.21 Let P → M be a Cartan geometry with connection ωP and
curvature Ω. It has constant curvature if K does not depend on P .

TheoremIV.22 Let P → M be a Cartan geometrymodeled on (g1,h) with connection
ωP and curvature Ω. Assume it has constant curvature and vanishing torsion. Then
λ : g1 → g2 ' g1 defined linearly by id (g2 is a linear copy of g1) but with bracket

[u, v]g2 = [u, v]g1 −K (u, v) (275)

defines a mutant geometry on which P → M is flat.

Proof We prove first that g2 is well defined. It only depends on wether the bracket
is indeed a bracket of Lie algebra. It is certainly anti-symmetric and bilinear since
K is a 2-form. The Jacobi identity is comes from the following computation.

[u, [v, w]g2 ]g2 = [u, [v, w]g2 ]g1 −K (u, [v, w]g2 ) (276)

= [u, [v, w]g1 ]g1 − [u,K (v, w)]g1 −K (u, [v, w]g1 )+K (u,K (v, w))
(277)

= [u, [v, w]g1 ]g1 − [u,K (v, w)]g1 −K (u, [v, w]g1 ) (278)

−[v, [u, w]g2 ]g2 =−[v, [u, w]g1 ]g1 + [v,K (u, w)]g1 +K (v, [u, w]g1 ) (279)

[[u, v]g2 , w]g2 =
[
[u, v]g1 , w

]
g1
−K ([u, v]g1 , w)− [K (u, v), w]g1 (280)
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Hence the Jacobi identity only depends on a circular identity of K (u, [v, w]) and
[K (u, v), w]. For this we use the Bianchi identity.

LetU ,V ,W be ω−1
P (u),ω−1

P (v),ω−1
P (w). Then, since the curvature is constant, (we

now take every bracket in g1)
dΩ(U ,V ,W ) =−Ω([U ,V ],W )+Ω(U , [V ,W ])−Ω(V , [U ,W ]) (281)

and the Bianchi identity say this is equal to
[Ω(U ,V ),ωP (W )]− [ωP (U ),Ω(V ,W )]+ [ωP (V ),Ω(U ,W )]. (282)

With a torsion free curvature we have also:
Ω([U ,V ],W ) = K ([u, v]−K (u, v), w) = K ([u, v], w). (283)

So the Bianchi identity states:
−K ([u, v], w)+K (u, [v, w])−K (v, [u, w]) = [K (u, v), w]− [u,K (v, w)]+ [v,K (u, w)]

(284)
finishing to prove that [·, ·]g2 is a bracket.

Now we prove that we have indeed a mutation. We need to prove that
[Ad(h)u,Ad(h)v]g2 = Ad(h)[u, v]g1 . This equality will be proved if we show

K (Ad(h)u,Ad(h)v) = Ad(h)K (u, v). (285)

It is true since by constant curvature:
Ω(U ,V ) = Ad(h)−1Ω(Ad(h)U ,Ad(h)V ). (286)

Finally, the new connection is indeed flat by the preceding proposition and a
straightforward computation. •

IV.7 Covariant derivative

On a reductive space G�H with an Ad(H)-invariant decomposition
g= h⊕p (287)

one can decompose any connection ωP along this decomposition:
ωP =ωh+ωp. (288)

Proposition IV.23 Let P → M be a Cartan geometry modeled on a reductive pair
(g,h) with connection ωP . Then one can define the operator ∇ω on vector fields:

∇ωX (Y ) = X (ωp(Y ))+ [
ωh(X ),ωp(Y )

]
(289)

and it defines a covariant derivative with values in g.

Proof It is clear that∇ω is bilinear. If f is smooth function then∇ωf X (Y ) = f ∇ωX (Y )

and ∇ωX ( f Y ) = d f (X )+ f ∇ωX (Y ) showing that it is a covariant derivation. •

Note In the case of an affine connection (p= Rn is commutative and h⊂ gl(n)) then
it can be shown by hand that the usual torsion and curvature of ∇ω corresponds to
the p factor and h factor of Ω respectively.

V—Cartan’s method and the equivalence problem

One of the basic problems in geometry is to understand the equivalence between
geometric objects. For instance, given two Riemannian manifolds when are they
locally or globally isometric? The main idea of Cartan’s method is to associate to
a manifold with a geometric structure another manifold (with higher dimension)
where the geometric structure is given by a parallelism of its cotangent bundle.
The parallelism can be defined in very general situations but when the geometric
structure is simple enough one can describe it by an importantmathematical object:
Cartan connections on principal bundles.
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V.1 Differential ideals and the equivalence problem

We will work in the C∞ category. Let Let M be an n-dimensional manifold and
Ω∗(M) be the set of sections of the space ΛT∗M , the graded algebra of the exterior
powers of the cotangent bundle. The spaceΩ∗(M) is the space of all the differential
forms of M .

Definition V.1 A differential ideal I ⊂Ω∗(M) is an ideal for the exterior algebra
and closed under exterior derivative.

DefinitionV.2 If I is a differential ideal, an integral submanifold is an immersion
φ : N → M such that φ∗ω= 0 for any ω ∈ I .

Note Note that if α is a 1-form that annihilates a distribution then since
dα(X ,Y ) = X (α(Y ))−Y (α(X ))−α([X ,Y ]) (290)

the ideal generated by such α’s is closed under the exterior derivative if, and only
if, [X ,Y ] belongs also to the distribution.

So the most natural example arises from the ideal ID of forms which annihilate
a distribution D . In that case the ideal is a differential ideal if, and only, if the
distribution is involutive and Frobenius theorem is stated in this language as the
following.2

Theorem V.3 (Frobenius) Let I be a differential ideal locally generated by (n −
p) independent 1-forms. Then, for each x ∈ M , there exists a unique maximal (of
dimension p) connected integral manifold of I passing through x .

In fact, it suffices that the 1-forms in the statement be of regularity C 1.

Example 1 If the ideal is generated by a single 1-form θ, then being a differential
idealmeans that dθ = θ∧ω, forω a 1-form. (Hence dθ∧θ = 0.)The extreme opposite
would be that θ satisfies dθ∧θ 6= 0 at every point. (It is the contact hypothesis.)

Example 2 If the ideal is generated by the 1-form dy −p dx and dp−F (x, y, p)dx in
R3 we obtain one dimensional integral submanifolds which correspond to solutions
of a second order differential equation.

The equivalence problem in its simplest form is the following. Let M1 and M2 be
manifolds of the same dimension n and {ωi

1} and {ωi
2} be coframe sections, that is,

n independent 1-forms. Is there a diffeomorphism
ψ : M1 → M2 such that ψ∗ωi

2 =ωi
1 ? (291)

To answer to that question Cartan used the graph method. The idea is to find
the map ψ by its graph in M1 ×M2. On the other hand, the graph is obtained as an
integral submanifold of a differential ideal.

TheoremV.4 Let M1 and M2 be manifolds and π1,π2 the projections of M1 ×M2

onto M1 and M2 respectively. Let (ωi
2)1≤i≤n be a basis of 1-forms of M2 and (ωi

1)1≤i≤n

be a family of forms M1 respectively. If the ideal of forms on M1 ×M2 generated by
π∗

1 (ωi
1)−π∗

2 (ωi
2) (292)

is a differential ideal then, for each pair (x, y) ∈ M1×M2, there exists a a map φ : U →
M2 such that φ(x) = y and

φ∗(ωi
2) =ωi

1. (293)
2See F. Warner, Foundations of differentiable manifolds and Lie groups.
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Proof The generating 1-forms are linearly independent because ωi
2 are linearly

independent. By Frobenius theorem, there exists a unique maximal submanifold G
of dimension n1 containing a point (x, y) ∈ M1×M2 which is an integral submanifold
of the differential ideal.

We show now that the submanifold is locally a graph. Consider a vector (v1, v2) ∈
TG ⊂ TM1 ×TM2. If (π1)∗(v1, v2) = 0 then v1 = 0 and therefore π∗

1 (ωi
1)(v1, v2) = 0

which implies (becauseG is an integral submanifold of the ideal) thatπ∗
2ω

i
2(v1, v2) =

0. We conclude that v2 = 0. Therefore T(x,y)G is isomorphic to Tm1 M1 and π1 is
a local diffeomorphism.

Let F : U →G be a local inverse ofπ1. We have that F (m) = (m,φ(m)) for a certain
function φ : U → M2. Moreover, as π∗

1 (ωi
1)−π∗

2 (ωi
2) = 0 on G , we obtain F∗(π∗

1 (ωi
1)−

π∗
2 (ωi

2)) = 0 and therefore ωi
1 =φ∗(ωi

2). •

With constant structures One special case occurs if we suppose that the coframes
in M1 and M2 verify

dωi = c i
j kω

j ∧ωk , (294)

with c i
j k constant numbers shared by both M1 and M2. Then, observe that

d
(
π∗

1ω
i
1 −π∗

2ω
i
2

)
=π∗

1 (dωi
1)−π∗

2 (dωi
2) (295)

=π∗
1

(
c i

j kω
j
1 ∧ωk

1

)
−π∗

2

(
c i

j kω
j
2 ∧ωk

2

)
(296)

= c i
j k

(
π∗

1 (ω j
1 ∧ωk

1 )−π∗
2 (ω j

2 ∧ωk
2 )

)
(297)

= c i
j k

((
π∗

1ω
j
1 −π∗

2ω
j
2

)
∧π∗

1ω
k
1 −π∗

2ω
j
2 ∧

(
π∗

2ω
k
2 −π∗

1ω
k
1

))
(298)

so that the ideal is differential and M1 and M2 are hence locally equivalent.
The case of Lie groups is particularly important. With any left-invariant frame

(Xi ) and its coframe (ωi ) we get structure constants c i
j k verifying the preceding

condition:
dωi = c i

j kω
j ∧ωk . (299)

A basis of 1-forms (ωi ) on a manifold M is called a parallelism of M . An auto-
morphism of a parallelism (ωi ) defined over a manifold M is a diffeomorphism
φ : M → M such that φ∗ωi =ωi . From unicity in the theorem above we obtain the
following corollary.

CorollaryV.5 Any automorphism of a parallelism with a fixed point is the identity.

In particular the dimension of the group of automorphisms is at most the dimen-
sion of the manifold. This gives a way to compute the maximal dimension of the
automorphism group of a geometry. The idea is to construct, from the geometric
data, another manifold with a canonical parallelism. The dimension of that mani-
fold gives the dimension of the group of automorphisms. With Cartan geometries,
this canonical parallelism is a Cartan connexion.

Theorem V.6 Let G be a Lie group with Lie algebra g. Let M be a manifold with
a g-valued 1-form φ defined on TM satisfying the structure equation

dφ+ 1

2
[φ∧φ] = 0. (300)

Then for any m ∈ M there exists a map f : U → G defined on a neighborhood of m
such that φ= f ∗θ where θ is the Maurer-Cartan form of G . Moreover if g : U →G is
another map satisfying this condition then g = Lh ◦ f for a certain constant h ∈G .
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Proof We consider, in the product M ×G , the Lie algebra valued form
ω=π∗

1φ−π∗
2θ, (301)

where π1 and π2 are the projections of the product on each factor.
Let I be the ideal generated by the componentsωi

j ofω. This is a differential ideal
because

dω=π∗
1 dφ−π∗

2 dθ (302)

=−1

2
π∗

1 [φ∧φ]+ 1

2
π∗

2 [θ∧θ] (303)

=−1

2

(
[π∗

1φ−π∗
2θ∧π∗

1φ]+ [π∗
2θ∧π∗

1φ]− [π∗
2θ∧π∗

2θ]
)

(304)

=−1

2

(
[ω∧π∗

1φ]+ [π∗
2θ∧ω]

)
(305)

=−1

2
[ω∧ω]. (306)

We invoke the previous theorem to conclude the existence of the map f : U →
G . A submanifold passing through another point (m0,h f (m0)) is clearly given by
(m,h f (m)) and by unicity this implies that g = Lh ◦ f . •

V.2 Developing map and Flat Cartan geometries

V.2.1 Path development

Lemma V.7 Let f : [0,1] → g be a smooth function. Let ω : TX → g be a complete
parallelism (its constant vector fieldsω−1(v) are complete, i.e. have flows fully defined
on R) verifying the structural equation. Then the differential equation

γ∗ω= f dt (307)

has a solution γ : [0,1] → X that is unique once an initial condition γ(0) = x ∈ X is
given.

Proof Note that f dt verifies the structural equation. By Cartan’s method, a local
solution does always exist and is unique once an initial condition is given. We have
to show that a solution can always be extended to the full interval [0,1].

Suppose that a local solution γ is only defined for t < 1. Then γ(t ) escapes every
compact set of X when t → 1. But when t → 1, f (t ) → v ∈ g and a global solution to
γ∗ω= v exists by completeness of ω on X . A contradiction. •

The development of paths follows from this lemma. We let ω= θG be the Maurer-
Cartan form of a Lie group G . Any path δ : [0,1] → P defined on a manifold P
equipped with a g-valued 1-form ω : TP → g gives by pulling back the 1-form δ∗ω.
Then by what precedes, δ∗ω = γ∗θG for a path γ : [0,1] → G .

In our context P will be the total space of a principal bundle P → M and the form
ω will be a Cartan connection.

Definition V.8 Let P be a smooth manifold equipped with a g-valued 1-form ω.
Any path δ : [0,1] → P determines a path Dω(δ) : [0,1] →G such that

δ∗ω= Dω(δ)∗θG (308)

and Dω(δ) is unique as soon as Dω(δ)(0) ∈G is prescribed.
The map giving the endpoint:

Eω(δ) = Dω(δ)(0)−1Dω(δ)(1) (309)

is well defined and does not depend on the choice of Dω(δ).
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The map Eω is defined on the space of the paths of P . Its values are in G . Now,
the goal is to obtain a map

Fω : P →G (310)

that would be a complete integration of ω:
F∗
ωθG =ω. (311)

The most natural way would be to fix p ∈ P and define Fω(z) as Eω(δ) for any path
δ joining p to z . With this goal in mind, one needs to compare the different values
of Eω for different paths joining the same points.

A natural assumption is to compare paths that have the same homotopy class in
π1(P, p). Those have indeed same endpoints by Eω if the space P is flat.

Lemma V.9 If there exists Fω such that F∗
ωθG = ω then ω verifies the structural

equation

dω+ 1

2
[ω∧ω] = 0. (312)

Proof This follows by naturality of the pulling-back and the fact that θG itself
verifies the structural equation. •

Since η is defined on the whole T[0,1], the function f is bounded.

PropositionV.10 Let P be a smooth manifold equipped with a g-valued 1-form ω

that verifies the structural equation. If H : [0,1]× [0,1] → P is an homotopy between
δ1 = H(0, t ) and δ2 = H(1, t ) then Eω(δ1) = Eω(δ2).

Proof Since ω verifies the structural equation, one can apply Cartan’s method.
Again, by completeness of the Maurer-Cartan form, it defines a complete integral
HG : [0,1]× [0,1] →G such that

H∗
GθG = H∗ω. (313)

Since H is a homotopy, H∗ω vanishes on [0,1]× {0,1}. Hence HG does too and it
furnishes an homotopy in G . Therefore HG has two equal endpoints for HG (0, t ) =
Dω(δ1) and HG (1, t ) = Dω(δ2). •

Definition V.11 Let P be a smooth manifold equipped with a g-valued 1-form ω

verifying the structural equation. The monodromy morphism
Φω : π1(P, p) →G (314)

is the value of Eω(δ) for any δ realizing a chosen class [δ] ∈ π1(P, p). It is a group
homomorphism by concatenation of paths. Its image is the monodromy subgroup
Φω(π1(P, p)) ⊂G .

Corollary V.12 Let P be a smooth manifold equipped with a g-valued 1-form.
There exists a global map Fω : P →G such that

F∗
ωθG =ω (315)

if, and only if, ω verifies the structural equation and its monodromy is trivial.

V.2.2 Flat Cartan geometries

Now we consider a Cartan geometry P → M . The development Fω of P in G will
allow to define a developing map from M̃ to G�H . Here we can see M̃ as the space
of the paths of M modulo homotopy.

A first step is to verify that the principal H -bundle structure on P is compatible
with the one on G under Fω.
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Lemma V.13 Let P → M be a Cartan geometry modeled on a reductive pair (g,h)
with a (non-necessarily flat) Cartan connection ω. Let δ : [0,1] → P be a path and
ψ : [0,1] → H be a smooth function. Then

Dω(δψ) = Dω(δ)ψ (316)

if we have the compatibility Dω(δψ)(0) = Dω(δ)(0)ψ(0).

Proof Both Dω(δψ) and Dω(δ)ψ are paths on G with same initial point. We only
need to check that their derivatives are equal since the unicity of the development
of paths would conclude. Indeed we have:

Dω(δψ)∗θG = (δψ)∗ω (317)

= Ad(ψ)−1δ∗ω+ψ∗θH (318)

= Ad(ψ)−1Dω(δ)∗θG +ψ∗θH (319)

= (Dω(δ)ψ)∗θG . (320)

•

Proposition V.14 Let P → M be a Cartan geometry modeled on an effective
Kleinian pair (g,h) with a flat Cartan connection ωP . Then there exists a local dif-
feomorphism

D : M̃ →G�H (321)

called a developing map.

Proof With the universal cover π1 : M̃ → M we define the pulled-back bundle
P̃ by

P̃ = {
(p, x) ∈ P × M̃

∣∣πP (p) =π1(x)
}

. (322)

We have the projectionmaps π̃1 : P̃ → P and πP̃ : P̃ → M̃ . The pulled-back Cartan
connection ωP̃ = π̃1

∗ωP defined on P̃ has still flat curvature by naturality.

TP̃ TP g TG

P̃ P G

M̃ M G�H

π̃1∗ ωP

ωG

π̃1

πP̃ πP πG

π1

(323)

The short exact sequence of the fiber bundle H → P̃ → M̃ shows that
π1(H ,e) →π1(P̃ , p) →π1(M̃ , x) = {e}. (324)

By composition with the monodromy morphism, we obtain the exact sequence:
{e} =ΦωP̃

(π1(H ,e)) →ΦωP̃
(π1(P̃ , p)) → {e} (325)

showing that the monodromy of P̃ is trivial. (Note thatΦωP̃
(π1(H ,e)) is trivial since

H ⊂ P̃ is developed by the identity diffeomorphism to H ⊂G .)
By the preceding corollary, we obtain a development

FωP̃
: P̃ →G . (326)

It is necessarily a local diffeomorphism that preserves the fibers since ωP̃ identifies
the tangent space of each fiber with h.

Therefore, FωP̃
descends to a developing map

D : M̃ →G�H (327)

that is again a local diffeomorphism. •
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PropositionV.15 Under the same assumptions, the developing map D : M̃ →G�H
is paired with a holonomy morphism

ρ : π1(M , x) →G (328)

that is equivariant:
∀γ ∈π1(M , x),∀y ∈ M̃ , D(γy) = ρ(γ)D(y). (329)

Proof Recall that with the universal cover π1 : M̃ → M we constructed
P̃ = {

(x, p) ∈ M̃ ×P
∣∣π1(x) =πP (p)

}
. (330)

The left action of π1(M , x) on M̃ can be lifted to P̃ by:
∀γ ∈π1(M), γ · (x, p) = (γ · x, p). (331)

Hence π̃1 ◦γ= π̃1. We obtain:
ωP̃ = π̃1

∗ωP = γ∗π̃1
∗ωP = γ∗ωP̃ . (332)

Since γ is an automorphism of P̃ , it corresponds to a left translation ρ(γ) ofG . For
indeed, with any path η based at p ∈ P̃ , the forms η∗ωP̃ and η∗γ∗ωP̃ are equal and
hence the endpoints of their developments differ by ρ(γ) which does not depends
on η. It can be checked that ρ is indeed a morphism by concatenation of loops in
π1(M , x). It verifies the equivariance property by what precedes. •

TheoremV.16 Let P → M be a Cartan geometry modeled on an effective Kleinian
pair (g,h) with a flat Cartan connection ωP . If the Cartan connection ωP is complete,
that is to say every ω−1

P (v) vector field is complete (its flow is defined on R), then the
developing map

D : M̃ →G�H (333)

is a coveringmap. IfG�H is also simply connected then it follows, with Γ= ρ(π1(M , x))
the image of the holonomy morphism, that D is a diffeomorphism and

M ∼= Γ�G�H . (334)

Proof The developing map D is a cover if, and only if, it has the lifting property.
That is to say, we check that D can lift uniquely any path in G�H with the choice of
base points x ∈ M̃ and D(x) ∈G�H .

Any smooth path δ : [0,1] →G�H can be lifted in G by a path δ̃ : [0,1] →G . Then
δ̃∗θG = f dt . By lemma V.13 (p. 38), there exists a unique path γ : [0,1] → P̃ such
that γ∗ωP̃ = f dt . Then the projection of γ in M̃ lifts δ by construction. •

Corollary V.17 Let P be smooth manifold equipped with a complete parallelism
ω : TP → g verifying the structural equation. If P is simply connected, then P is
diffeomorphic to G the unique simply connected Lie group with Lie algebra g. Its group
law is the concatenation of paths.
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