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Abstract

Falbel, Koseleff and Rouillier computed a large number of boundary unipo-
tent CR representations. Those representations are not always discrete. By
experimentally computing their limit set, one can determine that those with
fractal limit sets are discrete. Most of those discrete representations can be clas-
sified into (3,3,n) complex hyperbolic triangle groups. By exact computations,
we verify the existence of those triangle representations, which have unipotent
boundary holonomy. We also show that many representations are redundant:
for n fixed, all the (3,3,n) representations encountered are conjugated and
only one among them is uniformizable.
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I— Introduction

We are interested in triangle groups

Λ(p, q,r ) =
〈

a,b,c ;
a2 = b2 = c2 = e,

(ab)p = (bc)q = (ca)r = e

〉
(1)

and how they can be represented into the Lie group PU(2,1) by complex reflections,
that is to say, with a, b and c all being complex reflections with respect to complex
geodesic lines in the complex hyperbolic plane H2

C. Such a representation is called
a complex hyperbolic triangle group, denoted by ∆(p, q,r ), and the images of a, b and
c are often denoted by I1, I2 and I3. An additional hypothesis is that π

p + π
q + π

r <π

and can be interpreted as the requirement for the triangle to lie in the hyperbolic
plane.

Triangle groups represented in PO(2,1) (which is the transformation group of the
real hyperbolic plane) are fully prescribed by p, q and r (up to conjugation), whereas
in PU(2,1) (which is the transformation group of the complex hyperbolic plane)
an additional parameter controls the representation. This additional parameter
can be interpreted as follows. One can always set two vertices of the triangle in
a same real plane of H2

C. The last vertex has to be placed at the intersection of the
complex geodesic lines issued from the previous vertices. That intersection is a one-
dimensional topological space and it represents the possible values of the additional
parameter. Only one of those values corresponds to the case where the last vertex
lies in the same previous real plane (and therefore corresponds to a R-Fuchsian
representation). This parameter is called the angular invariant.

Complex hyperbolic triangle groups are a very rich class of representations in
PU(2,1) and one can ask whether it covers many known representations. In par-
ticular, a large number of fundamental groups’ representations of knots’ and links’
complements are known in PU(2,1). Falbel, Koseleff and Rouillier [FKR15] explic-
itly computed those representations with unipotent boundary for complements
described by four or less tetrahedra. The additional hypothesis of unipotent bound-
ary is strong but allows this explicit computation that remains a highly complex
numerical problem.

Those representations are accompanied by some delicate questions. Which repre-
sentations are discrete? Which are complex hyperbolic triangle groups?

In the early stages of those researches, Falbel [Fal08] constructed the unipotent
boundary representations of the figure-eight knot. Those (essentially) three represen-
tations have two discrete representations among them, which are indeed complex
hyperbolic triangle groups. To be more specific, those two representations can be
identified with the even-length words’ normal subgroup of a complex hyperbolic
triangle group ∆(3,3,4).

When complex hyperbolic triangle groups were exposed by Schwartz [Sch02] in
an ICM talk, he proposed the following conjecture which allows to compare the
previous two emphasized questions: if we find a complex hyperbolic triangle group,
is it a discrete and injective representation?

Conjecture I.1 (Schwartz) A complex hyperbolic triangle group ∆(p, q,r ) is a
discrete and injective representation, if and only if I2I3I1I3 and I1I2I3 are both not
elliptic.

Note that, in some rare cases, I2I3I1I3 and I1I2I3 canhavefinite order and∆(p, q,r )
can remain discrete (but is not an injective representation). For example, Thomp-
son [Tho10] showed that there exists a representation∆(3,3,4) with I2I3I1I3 of order
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7 and a representation ∆(3,3,5) with I2I3I1I3 of order 5, and that both representa-
tions are lattices.

A first step toward this conjecture is a result of Grossi [Gro07]. It shows that in
the case of (p, q,r ) = (3,3,n), the fact that I2I3I1I3 is not elliptic implies that I1I2I3

is not either. A proof of Schwartz’ conjecture in the case of (3,3,n) has been given by
Parker, Wang and Xie [PWX16] and the case of (3,3,∞) has been studied by Parker
and Will [PW17].

TheoremI.2 ([PWX16],[PW17]) Let 4 ≤ n ≤∞. LetΓ be a hyperbolic (3,3,n) triangle
group. Then Γ is a discrete and faithful representation of∆(3,3,n) if and only if I2I3I1I3

is not elliptic.

This allows the following study: take ρ a boundary unipotent representation; is
it discrete? Is it triangular? Both questions are here treated in a systematic and
experimental manner.

To study the discreteness of a representation we chose to experimentally compute
its limit set. This set is an attractor for the iteration dynamic and a simple argument
allows to prove the discreteness: if this limit set is fractal then the representation is
discrete (unfortunately, the converse does not hold).

Those representations with fractal limit sets are then set aside from the others.
There are only two dozens of them (in comparaison of hundreds). They are then
manipulated in order to try to prove that they come from a complex hyperbolic
triangle group. We show thatmany of them are in fact triangle groups with (p, q,r ) =
(3,3,n) with n ≥ 4.

Since those representations are discrete, I2I3I1I3 is not elliptic. In our examples,
we show that it is even parabolic unipotent and that the conjugacy class can be
chosen so that I2I3I1I3 generates the boundary holonomy of the fundamental group.

Wewould like to stress this last phenomenon. When amanifold M has an abstract
triangle representation ρ : π1(M) →Λ(p, q,r ), then this representation has various
embeddings π1(M) → Λ(p, q,r ) → ∆(p, q,r ) ⊂ PU(2,1) by the choice of the angu-
lar invariant. Only one representation ∆(p, q,r ) is such that I2I3I1I3 is parabolic
unipotent. In every example that the author encountered, this choice implied that
the boundary holonomy is also parabolic unipotent and even described by the el-
ement I2I3I1I3. If this phenomenon was always true, it would justify the search
for triangle representations using only the computation of boundary unipotent CR
representations. It is a drastic reduction. For example, the figure-eight knot has
a two-dimensional character variety [Fal+16] but only three (up to complex conjuga-
tion) different unipotent boundary representations.

A phenomenon that will also interest us here is redundancy: among all the (3,3,n)
triangle groups’ representations (with n fixed) appearing in the census in [FKR15],
only one corresponds to a uniformization of the underlying CR structure.

There is a delicate relationship between a CR representation of a manifold M and
a uniformizable CR representation of M . In the latter case, the image group Γ com-
pletely determines M : if U is its discontinuity domain then U /Γ is diffeomorphic to
M (that is the definition of being uniformizable). Interestingly, it is very hard to deter-
mine whether a CR representation is uniformizable. The algebraic computations of
the CR representations do not involve a conservation of the topological information.

Deraux [Der15] first showed thatm009 andm015 are twomanifoldswith boundary
unipotent CR representations ∆(3,3,5) which are conjugated, but only the represen-
tation of m009 is uniformizable. In fact, once we know that two representations are
conjugated, then it follows that only one of them can be uniformizable by an evident
topological argument.
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The final result of the present work is:

Theorem (IV.1) In the following table, the manifolds have a (3,3,n) complex hyper-
bolic triangle group representation, with the normal subgroup of the even-length words
for image. Furthermore, all those representations ( for a shared a column) are the same,
up to conjugation and complex conjugation. The starred manifolds correspond to the
uniformizable representations.

∆(3,3,4) ∆(3,3,5) ∆(3,3,6) ∆(3,3,7) ∆(3,3,∞)
m004* m009* m023* (m039)* m129*
m022 m015 m032 m203
m029 m142 m045
m034 m146
m081
m117

The even-length subgroups of the triangle groups∆(3,3,n) with I2I3I1I3 parabolic
unipotent were finely studied by a theorem of Acosta. This theorem allows to identify
the manifold at infinity and to check which manifolds have a uniformizable triangle
representation.

Theorem I.3 ([Aco19]) Let 4 ≤ n ≤∞. Let Γ be a hyperbolic (3,3,n) triangle group.
Suppose that I2I3I1I3 is parabolic unipotent. Let Γ′ ⊂ Γ be the subgroup of even-length
words. Then the manifold at infinity of H2

C/Γ′ is the Dehn surgery with slope (1,n −3)
on any cusp of the Whitehead link complement.

In section II, we succinctly expose a few elements of complex hyperbolic geometry
that are necessary to the subject. In section III, we explain how the numerical exper-
iments were driven. We also propose visual clues in order to recognize the limit sets
of the various triangle representations ∆(3,3,n) with n varying and I2I3I1I3 always
parabolic unipotent. Finally, in section IV we summarized the various representa-
tions with an apparent fractal limit set. We show that a subclass is only composed
of ∆(3,3,n) triangle groups. For this, we only employ formal computations, so the
result is certain. We also explain how to retrieve which of each class for n fixed is
uniformizable.

Note This paper is part of the author’s thesis, in progress under the supervision of
Elisha Falbel.
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II—Elements of complex hyperbolic geometry

In this first section, we expose the main tools and notions in use. One can compare
with [Wil16], [Gol99], [Pra05] and [CG74].

We consider the space C2,1, that is to say C3 equipped with the Hermitian product
〈z, w〉 = z1w1 + z2w2 − z3w3. (2)

The linear subspace of the vectors verifying 〈z, z〉 < 0 can be projectivised in CP2 and
is identified to the complex hyperbolic plane, H2

C. In the affine chart z3 = 1, one can
identify H2

C with the set of vectors verifying |z1|2 +|z2|2 < 1. This description of the
complex hyperbolic plane is also known as the Kleinmodel of H2

C. Its boundary in the
complex projective plane is a differentiable sphere S3 and is given by |z1|2+|z2|2 = 1.
Those points are in correspondance with the non-null vector lines in C2,1 verifying
〈z, z〉 = 0.

The orthogonal group of C2,1 is U(2,1) and its projectivised version is PU(2,1). To-
gether with the complex conjugation, the group áPU(2,1) is the transformation group
of H2

C and also of its boundary sphere. This last geometrical structure ( áPU(2,1),S3)
is the spherical CR structure and (PU(2,1),S3) is the orientation-preserving spherical
CR structure.

Let A ∈ SU(2,1). If A has a fixed point in H2
C then A is elliptic. If inf{d(x, A(x))} > 0

with d the associated distance function of H2
C then A is loxodromic (or hyperbolic).

Otherwise, A is parabolic. One can determine the type of A by looking at its trace.
We follow Goldman [Gol99] and let

f (τ) = |τ|4 −8Re(τ3)+18|τ|2 −27. (3)

If f (tr A) > 0 then A is loxodromic, if f (tr A) < 0 then A is elliptic (in fact regular
elliptic: all its eigenvalues are different). When f (tr A) = 0 there are three cases:
if tr(A)3 = 27 then A is parabolic unipotent (all its eigenvalues are 1), otherwise
it is either elliptic (and therefore a reflection with respect to a point or a complex
geodesic) or ellipto-parabolic (a screw transformation along a complex geodesic).
Note that when τ is real:

f (τ) = (τ+1)(τ−3)3, (4)

and (under the hypothesis that tr(A) is real) A is therefore regular elliptic if tr(A) ∈
]−1,3[, is loxodromic if tr(A) 6∈ [−1,3] and is parabolic unipotent if tr(A) = 3.

Let M be a smooth manifold and π1(M) its fundamental group. A representation
ρ : π1(M) → PU(2,1) is a (CR) uniformization of M if U /ρ(π1(M)) is diffeomorphic
to M , whereU ⊂ ∂H2

C is the domain of discontinuity of ρ(π1(M)). When ρ is discrete,
U = ∂H2

C −L(ρ(π1(M))), where L(ρ(π1(M))) is the limit set of ρ(π1(M)). The next
section will describe this set. A manifold admitting such a representation is said to
be (CR) uniformizable. Those manifolds are of high matter in the study of spherical
CR structures and are determined by the algebraic data of ρ. In general,U /ρ(π1(M))
is a smooth manifold but is too hard to identify. It remains unknown which three-
manifolds are CR uniformizable.

II.1 Limit sets

Let Γ⊂ PU(2,1) be a subgroup. Its limit set L(Γ) is given by:
L(Γ) = Γ ·p ∩∂H2

C, (5)

where p ∈ H2
C is any point (L(Γ) is independent of this choice).

Lemma II.1 The main properties of this set are the following. (Compare with [CG74].)
(1) The limit set L(Γ) is compact and Γ-invariant.
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(2) If A ⊂ ∂H2
C is compact, Γ-invariant and is constituted of at least two points, then

A ⊂ L(Γ).
(3) If L(Γ) =; then Γ fixes a point in H2

C.
(4) If L(Γ) has at most two points, then L(Γ) is said to be elementary, otherwise it

has an infinity number of points and is perfect (each point is an accumulating
point).

An important result is the following.

Proposition II.2 ([CG74]) If Γ is not discrete then L(Γ) is either elementary, or
equal to ∂H2

C, or equal to the boundary of a totally geodesic proper subspace, that is to
say a smooth circle.

By consequence, if L(Γ) is a fractal, then Γ is discrete. It is a powerful experimen-
tal way to check if Γ is discrete, since no abstract systematic argument allows to
know this.

The auto-similarity property of limit sets can be justified by the following.

Lemma II.3 Let Γ be a discrete subgroup of L(Γ) and suppose that L(Γ) is not ele-
mentary. Let a ∈ L(Γ) be any point and V be any open neighbhorhood of a. Then there
exists γ1, . . . ,γn ∈ Γ such that

L(Γ) =⋃
γi ·V ∩L(Γ). (6)

Proof Let W = ∂H2
C −⋃

Γ ·V . It is compact and Γ-invariant. By construction, W
can not have more than one point. If W = {b} then Γ let b fixed and it follows that
L(Γ) must be elementary since it is discrete (this relies on an observation on the
corresponding Heisenberg transformation group). Therefore W =; and it follows
that L(Γ) ⊂⋃

Γ ·V . By compacity of L(Γ), only a finite number of γi ·V are necessary.
•

II.2 Complex hyperbolic triangle groups

We will now describe more precisely the complex hyperbolic triangle groups

∆(p, q,r ) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,
(I1I2)p = (I2I3)q = (I3I1)r = e

〉
⊂ PU(2,1), (7)

with I1, I2 and I3 all three being complex reflections. If p or q or r is infinite, then
the corresponding relation vanishes.

Let ∆(p, q,r ) be a non-singular complex hyperbolic triangle group (the geodesic
lines corresponding to the reflections are distinct), with 2 ≤ p ≤ q ≤ r ≤ ∞ and
π
p + π

q + π
r <π. Any such triangle group can be represented by a complex hyperbolic

triangle in H2
C ⊂ CP2.

Let H1, H2 and H3 be the vectorial hyperplanes of C3 covering the sides of the
triangle in CP2. Let L1, L2 and L3 be the dual complex lines of those hyperplanes
defined by 〈Hi ,Li 〉 = 0. The group ∆(p, q,r ) is fully described by them.

We only need to choose a base vector for each Li in order to retrieve those lines.
Furthermore, note that such base vectors form a basis of C3 since the triangle group
is non-singular.

Let vk be a base vector of Lk , then

Ik (x) =−x + 2〈vk , x〉
〈vk , vk〉

vk (8)

is a complex reflection (note that 〈vk , x〉 and not 〈x, vk〉makes this transformation
linear) and verifies Ik (hk ) =−hk for any hk ∈ Hk . That is to say, in CP2, Ik (hk ) ≡ hk .
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Therefore Ik indeed defines the reflection fixing Hk . Because 〈vk , vk〉 > 0, one can
normalize vk so that 〈vk , vk〉 = 1.

The last free parameters are an angle zk ∈ S1 for each vk . One can set z1 and then
modify z2 and z3 so that 〈v1, v2〉 and 〈v2, v3〉 are real and positive. In general, 〈v1, v3〉
is not real and this lack can be measured by arg(〈v1, v3〉). From an intrinsic point
of view, that is to say without choosing the zk ’s, the default for the vertices to be in
a same real plane can be measured by

θ =−arg(〈v1, v2〉〈v2, v3〉〈v3, v1〉). (9)

The value of θ is also known under the name of the angular invariant.
Once 〈vi , v j 〉 = ci j are known, it is easy to evaluate the matrices of I1, I2 and I3 in

the basis (v1, v2, v3).

I1 =
1 2c12 2c13

0 −1 0
0 0 −1

 (10)

I2 =
 −1 0 0

2c21 1 2c23

0 0 −1

 (11)

I3 =
 −1 0 0

0 −1 0
2c31 2c32 1

 (12)

We still have to see how p , q , r and θ determine 〈vi , v j 〉 = ci j . For the time being,
we suppose r <∞. In fact, the matrix given by the ci j ’s is equal to:

H =


1 cos π

p cos π
r eiθ

cos π
p 1 cos π

q

cos π
r e−iθ cos π

q 1

 . (13)

And this shows that the ci j ’s fully determine p , q , r and θ in return. This matrix is an
Hermitian form preserved by I1, I2 and I3. The determinant of this matrix is given by

1+2cos(θ)cos
π

p
cos

π

q
cos

π

r
−cos

(
π

p

)2

−cos

(
π

q

)2

−cos
(π

r

)2
. (14)

This determinant allows to decide when H has (2,1) for signature. Since the trace of
H is 3, it implies that at least one eigenvalue is positive. Therefore, its determinant
is negative if and only if H has (2,1) for signature. That is equivalent to:

cos(θ) <
−1+cos

(
π
p

)2 +cos
(
π
q

)2 +cos
(
π
r

)2

2cos π
p cos π

q cos π
r

. (15)

That must be the case since the original Hermitian form 〈·, ·〉 has (2,1) for signature.
If p = 2 then c12 vanishes and one can make both c23 and c13 real. Therefore,

(2, q,r ) complex hyperbolic triangle groups are rigid.

We now justify the expression of H . Up to conjugation, we can suppose that
H1 ∩ H2 is generated by (0,0,1). This implies that v1 and v2 are both of the form
(x, y,0). Therefore, every ci j is given by v1

i v1
j +v2

i v2
j since at least one of vi or v j has

a vanishing third coordinate.
Therefore, geometrically speaking, ci j is the cosine of the angle in C2 formed by

the complex lines generated by the first two coordinates of vi and v j . It is the real
part of ci j that is equal to the cosine of the angle formed by the vectors given by the
first two coordinates of vi and v j (see [Gol99, p. 36]).
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Note that c13 is non real in general, but of course 〈v1,eiθv3〉 = e−iθ〈v1, v3〉 =
e−iθc13 is real. The angle formed by H1 and H2 is equal to π

p since (I1I2)p = e . By
taking the duals v1 and v2, we get c12 =±cos π

p but we made c12 positive therefore
c12 = cos π

p . Likewise, c23 = cos π
q and e−iθc13 = cos π

r .

Finally, one can compute, with i 6= j 6= k :
tr(Ii I j Ik I j ) = 16|ci j ck j |2 −16Re(c12c23c31)+4|ci k |2 −1, (16)

and note that in our conventions, Re(c12c23c31) = c12c23c13 cosθ. It shows that
tr(Ii I j Ik I j ) determines ±θ once (p, q,r ) is known. Since the complex conjugation
changes θ into −θ, we deduce from our discussion the following results. In the case
where (p, q,r ) = (3,3,r ) we have in fact:

tr(Ii I j Ik I j ) = 4cos
(π

r

)2
−4cos

π

r
cosθ. (17)

Proposition II.4 ([Pra05]) Let 3 ≤ p ≤ q ≤ r < ∞ be such that π
p + π

q + π
r < π.

A representation of the triangle group

∆(p, q,r ) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,
(I1I2)p = (I2I3)q = (I3I1)r = e

〉
(18)

into PU(2,1) is determined by θ = arg(〈v1, v2〉〈v2, v3〉〈v1, v3〉) up to conjugation. Up to
conjugation and complex conjugation, it is determined by tr(Ii I j Ik I j ), with i 6= j 6= k .

Furthermore, θ verifies

cos(θ) <
−1+cos

(
π
p

)2 +cos
(
π
q

)2 +cos
(
π
r

)2

2cos π
p cos π

q cos π
r

(19)

and reciprocally, this condition suffices to define a representation with that value of θ.

The parameter θ can be taken in ]0,π] since the complex conjugation exchanges
θ and 2π−θ. The possible values of tr(Ii I j Ik I j ) are constrained by the preceding
condition. For example, when (p, q,r ) = (3,3,r ), we have

cosθ < −1
2 +cos

(
π
r

)2

1
2 cos π

r

= −1+2cos
(
π
r

)2

cos π
r

. (20)

If we take a look at the trace of Ii I j Ik I j , its maximum is given for cosθminimal (that
is to say −1) and its minimum by the maximum of cosθ.

tr(Ii I j Ik I j ) ≤ 4cos
π

r

(
cos

π

r
+1

)
, (21)

tr(Ii I j Ik I j ) > 4cos
(π

r

)2
−4cos

π

r

(−1+2cos
(
π
r

)2

cos π
r

)
= 4

(
1−cos

(π
r

)2
)
> 0. (22)

This computation shows that the range of values of tr(Ii I j Ik I j ) is included in R+ and
therefore, the range for which ∆(p, q,r ) is discrete and injective is of the form [3,m],
with m the maximum stated before. The value 3 is indeed reachable: the minimum
value for r is 4, since we have to verify π

p + π
q + π

r < π, and the maximum value of
4(1−cos(πr )2) is indeed reached when r is minimal. This value for r = 4 is 1.

One can compute the angular invariant required to have Ii I j Ik I j parabolic unipo-
tent. It is given by:

cosθ = cos
π

r
− 3

4cos π
r

. (23)

When one or several of p , q and r are non finite, we can get similar results by
replacing the undefined ci j with cosh(li j /2), where li j is the distance between the
two complex hyperbolic geodesics Hi and H j . See [Pra05]. In particular, it is still
true that cosθ is determined by tr(Ii I j Ik I j ).
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III—Experimental approach

In this section, we explain how we experimentally computed the limit sets of the
representations appearing in the census of Falbel-Koseleff-Rouillier [FKR15]. We
also propose a comparative experiment by simulating the limit sets associated to the
(3,3,n) triangle groups. It will allow us to propose visual clues in order to distinguish
the different (3,3,n) triangle groups’ fractals when I2I3I1I3 is parabolic.

The source code of the simulations and most of their results are available on the
author’s webpage. The code has been made open-source.

III.1 Computing limit sets

Lemma III.1 Let Γ ⊂ PU(n,1) be a subgroup. Let ΓL denote the subgroup of the
loxodromic elements. Suppose that the limit set L(Γ) is non elementary and that ΓL 6= ;.
Then the closure of the accumulation points’ set for the loxodromic iteration dynamic,{

x |∃g ∈ ΓL , lim g n x0 = x
}

, x0 ∈ H2
C, (24)

is equal to the full limit set L(Γ).

Proof This ensues from the following remark. Note that if g is loxodromic then
any conjugation γgγ−1 is loxodromic too. Now, γx is equal to limγg nγ−1(x0). This
shows that the described set has two points (the attractive points of g and g−1) and
is Γ-invariant. •

It allows a first good strategy: computing attractive limit points of loxodromic
elements. However, this strategy requires to compute a very large number of ele-
ments g ∈ Γ. This can be done by generating words of length n. If Γ is described by
two generators, then there are approximately 3n words of length n. An additional
strategy consists in computing two lists of the half-length words and combining
them at the last moment (in order to save a square root of memory space).

In practice, and this is particularly true with complex hyperbolic triangle groups,
it is hard to get different points from such a computation. One can often see large
concentrations of points in tiny boxes and even many copies of the same point. This
is partly due to unknown relations between words, even at small length words.

Instead of only computing words and get their attractive limits, we used a second
strategy in complement. When enough points are acquired, one can apply words
on them (loxodromic or not) to get a better picture of the limit set. This method is
much more efficient for it rarely makes redundant images. When nice symmetries
are known (and for example, with complex hyperbolic triangles one knows the sym-
metries I1, I2 and I3), this allows a much better result. To symmetrize fully, one can
apply each symmetry successively on the set of points.

In practice, we first compute the attractive points of n1-length words, then apply
given symmetries on the set obtained, then apply n2-length words on them, and
again apply symmetries. At each step, we sort and select points in order to eliminate
redundancy in the results.

At the end, we still have to project the points from CP2 into R3 ⊂ ∂H2
C. It can be

done once a Hermitian form determining ∂H2
C is known. We used a least-square

method to solve the natural systemof linear equations associated to such aHermitian
form in order to have this information.
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III.2 Complex hyperbolic (3,3,n) triangle groups

To compute the limit sets associated to PU(2,1)-representations of (3,3,n) triangle
groups, we used our previous parametrization of the reflections I1, I2, and I3. We
already have all the tools necessary to ensure that θ is acceptable and gives a discrete
representation. Note that when θ =π, it corresponds to a R-Fuchsian representation
and the limit set is therefore a (R-)circle (since the representation preserves a real
plane).

For n ∈ {4,5,6,7} we show three projections of the limit set and an additional
diagram proposing a visual clue to recognize the limit set (figures 1, 2, 3, and 4). This
visual clue consists in looking for a pair of symmetric spikes and inspect the middle.
We count the largest outer holes. When n = 4 there is none, when n = 5 there is one,
when n = 6 there are two and when n = 7 there are three.

Figure 1: Hyperbolic triangle group (3,3,4) with I2I3I1I3 parabolic.

The visual clues are pointed out in the following examples. See figures 5, 6, 7 and 8.

IV—Redundancy

From the census of the unipotent boundary representations in [FKR15], we experi-
mentally computed the limit sets. After a visual inspection, we kept the representa-
tions that gave fractals.
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Figure 2: Hyperbolic triangle group (3,3,5) with I2I3I1I3 parabolic.

Those representations come in pairs by complex conjugation of the coefficients.
For each pair, we wrote down the identifier of one representation and of verified
relations (they are true by exact computations) in the following table. Often, those
relations allowed to reproduce the relation of the fundamental group. Each time,
the fundamental group is presented by two generators and a relation.

In the next table (table 1), we present all the representations which gave a fractal.
Those accompanied by a star won’t be studied furthermore.

Additional remarks on the full experimental table It is already known that m004-1
and m004-3 are related by the composition of a figure-eight knot’s symmetry (see
[Fal08]). It might be the same for m045-1 and m045-8 but this remains to be proved.

The representationm038-1 presents the characteristics of a (3,4,4) complex hyper-
bolic triangle group. Indeed, m038 has such a representation according to a preprint
of Ma and Xie that the author has been able to consult. The representation m137-5
presents the characteristics of a (3,4,5) complex hyperbolic triangle group.

The representations we selected all present characteristics of (3,3,n) complex
hyperbolic groups. We will indeed show this phenomenon.

Theorem IV.1 For each column of table 2, the manifolds have a (3,3,n) complex
hyperbolic triangle group representation, with the normal subgroup of the even-length
words for image. Furthermore, all those representations ( for a shared a column) are
the same, up to conjugation and complex conjugation.

11



id an = e bn = e (a,b)n = e
m004-1 [0,0,0] a4 b3 (Ab)3

m004-3* [0,1,0]
m009-1 [0,1,2] a5 (aaB)3, (aab)3

m015-2 [0,1,2] a3 b5 (abb)3

m022-1 [0,0,0] a3 b4 (ab)3

m023-1 [0,0,0] b6 (Abb)3, (aB 3)3

m023-7* [0,4,0]
m029-1 [0,0,0] a3 b4 (aB)3

m032-7 [0,2,4] a3 b7 (ABB)3

m034-1 [0,0,0] a4 b3 (AB)3

m035-1* [0,0,0] (B a)2, (aB Ab3)2

m038-1* [0,0,0] a4 b4 (AB)3

m045-1* [0,0,0] (aab)2, (a3bbaa)2

m045-8 [0,4,2] a7 b3 (aaaB)3

m053-1* [0,0,0]
m053-4* [0,1,1]
m053-7* [0,2,2]
m081-1 [0,0,0] a3 b4 (aB)3

m117-1 [0,0,0] a3 b3 (AB)4

m129-1 [0,0,0] a3 b3

m130-1* [0,1,0] (ab)2, (a2b3)4, (a2b4)2

m137-5* [0,2,2] a4 b5 (Abb)3

m142-1 [0,0,2] a3 b3 (aB)5

m146-3 [0,3,2] a3 b5 (AB)3

m203-1 [0,0,0] a3 b3

Table 1: Full experimental table.

∆(3,3,4) ∆(3,3,5) ∆(3,3,6) ∆(3,3,7) ∆(3,3,∞)
m004* m009* m023* (m039)* m129*
m022 m015 m032 m203
m029 m142 m045
m034 m146
m081
m117

Table 2: Manifolds with (3,3,n) complex hyperbolic triangle group representations.
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Figure 3: Hyperbolic triangle group (3,3,6) with I2I3I1I3 parabolic.

By consequence, for each column, at most one representation is a uniformization
of the corresponding manifold. Deraux [Der15] encountered the same phenomenon
with the manifolds m009 and m015. In fact, we can complete the picture with the
following result of Acosta.

Theorem IV.2 ([Aco19]) Let 4 ≤ n ≤∞. Let Γ be a hyperbolic (3,3,n) triangle group.
Suppose that I2I3I1I3 is parabolic unipotent. Let Γ′ ⊂ Γ be the subgroup of even-length
words. Then the manifold at infinity of H2

C/Γ′ is the Dehn surgery with slope (1,n −3)
on any cusp of the Whitehead link complement.

With SnapPy, it is possible to compute Dehn surgeries on the Whitehead link
complement. Remember that m129 is the Whitehead link complement. In each
column, we can identify a uniforming representation (which must be unique in the
column). (In order to make SnapPy work correctly, one needs to call the manifold 52

1
and fill a cusp with the meridian equal to n −3 and the longitude equal to 1.)

The manifolds in table 2 for which the corresponding (3,3,n) representation is
a uniformization were marked with a star. Those manifolds are: m004, m009, m023,
m039 and m129. The first uniformization of m129 (the Whitehead link complement)
was shown by Schwartz [Sch01], but the present uniformization by a (3,3,∞) triangle
group with unipotent boundary was studied by Parker and Will [PW17].
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Figure 4: Hyperbolic triangle group (3,3,7) with I2I3I1I3 parabolic.

About m039 This manifold is described with 5 tetrahedra and does therefore not
appear in the explicit census of [FKR15]. By the theorem of Acosta, it does have a rep-
resentationwith the even-length subgroup of the (3,3,7) complex hyperbolic triangle
group having I2I3I1I3 parabolic for image. We will construct this representation and
show that it has in fact parabolic unipotent boundary.

The same phenomenon happens for s000, the manifold obtained by Dehn surgery
on the complement of the Whitehead link with the slope associated to the triangle
group (3,3,8).

The method In the following subsections, corresponding to the different values of
n, we recognize the selected representations and reconstruct the triangle group
representation in order to show the result with certainty. This is organized in three
steps and for each one we give a table.

(1) The first table gives the informations from the census. That is to say, the way to
retrieve the representation is the census (its identifier) and some relations (for-
mally) verified that suggests the choice of the triangle group. Those relations
always imply the fundamental group relation.

(2) The second table gives a morphism from the fundamental group of the variety
to the abstract triangle group Λ(3,3,n). This is achieved by giving a presenta-
tion of the fundamental group (that is always constituted of two generators
and a relation) and the specification of the generators’ images. We check that
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Figure 5: The representation m022-1 is of type (3,3,4).

Figure 6: The representation m015-2 is of type (3,3,5).

the morphism chosen verifies the relations given in the preceding table and
(therefore) the fundamental group relation (showing that it is indeed a mor-
phism). In this table, we also precise what the word corresponding to I2I3I1I3

is. This word can be experimentally computed with the representation of the
census, and we can check that it is indeed parabolic unipotent (for one can
take the trace once it is verified that the matrix is in SU(2,1)).

(3) In the third table, we compute the peripheral holonomy. Equivalences of words
are given according to the relations inscribed in the first table (that are verified
by the abstract morphism previously constructed). This peripheral holonomy
is computed in terms of I2I3I1I3. This implies that the abstract representa-
tion, once embedded in PU(2,1) with the convenient angular invariant (that
makes I2I3I1I3 parabolic unipotent) must exist in the census. Therefore, this
constructed representation is indeed conjugated (or complex conjugated) to
the one selected in the census, by unicity of the complex hyperbolic triangle
group representations that has I2I3I1I3 parabolic.

IV.1 (3,3,4) – m004, m022, m029, m034, m081 andm117

The first table is computed with the help of the following code.
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Figure 7: The representation m023-1 is of type (3,3,6).

Figure 8: The representation m032-7 is of type (3,3,7).

import snappy
import numpy

# Data
s = 'm022'
i,j,k = 0,0,0
#

M = snappy.Manifold(s)
G = M.fundamental_group()
P = M.ptolemy_variety(3,'all').retrieve_solutions(prefer_rur=True,

verbose=False)
S = [[component

for component in per_obstruction
if component.dimension == 0]
for per_obstruction in P]

K = S[i][j]

def f(x):
mat_x = K.evaluate_word(x,G)
return [[z.lift() for z in y] for y in mat_x]

# Search trivial word
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word = 'a' # to be changed manually
for i in range(1,50):

s = f(word*i)
if s == [[1, 0, 0], [0, 1, 0], [0, 0, 1]]:

print(i,s)
break

id an = e bn = e (a,b)n = e
m004-1 [0,0,0] a4 b3 (Ab)3

m022-1 [0,0,0] a3 b4 (ab)3

m029-1 [0,0,0] a3 b4 (aB)3

m034-1 [0,0,0] a4 b3 (AB)3

m081-1 [0,0,0] a3 b4 (aB)3

m117-1 [0,0,0] a3 b3 (AB)4

Here, we consider the abstract triangle group

Λ(3,3,4) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,

(I1I2)3 = (I2I3)3 = (I3I1)4 = e

〉
. (25)

a b fundamental group’s relation I2I3I1I3 = P
m004 I3I1 I3I2 aabABBAba B A
m022 I3I2 I1I3 abbbbbabAAb Ab
m029 I2I1 I3I1 aBabbbAAbbb aBB
m034 I3I1 I1I2 aaabbABAbb B A A
m081 I2I1 I3I1 abbbaBaaaaB aBB
m117 I3I2 I3I1I2I3 aabbaabbABAbb aB

peripheral curves
m004 ab aB Ab AB ab ≡ (ab)3

P−1 P−3

m022 B a A Abab A ≡ B a
P−1 P−1

m029 abb ≡ aBB b A A Abbb ≡ e
P e

m034 bbaa ≡ B A A A A ABBB A ≡ e
P e

m081 bba ≡ BB a B aaaB a ≡ BB a
I1P−1I1 I1P−1I1

m117 b A B A A AB A ≡ b A
P−1 P−1

IV.2 (3,3,5) – m009, m015, m142 andm146

We iterate the same process.

id an = e bn = e (a,b)n = e
m009-1 [0,1,2] a5 (aaB)3, (aab)3

m015-2 [0,1,2] a3 b5 (abb)3

m142-1 [0,0,2] a3 b3 (aB)5

m146-3 [0,3,2] a3 b5 (AB)3
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This time, the triangle group is

Λ(3,3,5) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,

(I1I2)3 = (I2I3)3 = (I3I1)5 = e

〉
. (26)

a b fundamental group’s relation I2I3I1I3 = P
m009 I1I3 I3I1I3I1I3I2 aabABaaBAb B A
m015 I2I1 I3I1I3I1 abbAAbbaBBB aB
m142 I3I1I2I3 I2I3 abbaBabbaBaaaaB B A
m146 I2I3 I3I1 aabbaaabbaaBAB aB

peripheral curves
m009 ab AB aaaB Ab ≡ (ab)2

P−1 P−1

m015 b A abb A A Abb ≡ (b A)−1

P−1 P
m142 B A b A A Ab A ≡ B A

P P
m146 baa ≡ b A B AB ABB ≡ aB

P−1 P

IV.3 (3,3,6) – m023

id an = e bn = e (a,b)n = e
m023-1 [0,0,0] b6 (Abb)3, (aB 3)3

The triangle group is

∆(3,3,6) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,

(I1I2)3 = (I2I3)3 = (I3I1)6 = e

〉
. (27)

a b fundamental group’s relation I2I3I1I3 = P
m023 I3I1I3I1I3I2I3I1 I1I3 aBAbbABabbb B AB

peripheral curves
m023 bab bbaB AB abb ≡ (B AB)2

P−1 P 2

IV.4 (3,3,7) – m032, m045 andm039

id an = e bn = e (a,b)n = e
m032-7 [0,2,4] a3 b7 (ABB)3

m045-8 [0,4,2] a7 b3 (aaaB)3

The triangle group is

Λ(3,3,7) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,

(I1I2)3 = (I2I3)3 = (I3I1)7 = e

〉
. (28)

a b fundamental group’s relation I2I3I1I3 = P
m032 I1I2 I1I3I1I3I1I3 aaBBAbbbbbABB Abbb
m045 I1I3I1I3 I2I1 aaabbaaaBAAAAB ba
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peripheral curves
m032 BBB a bb A A Abba ≡ BBB a

P−1 P−1

m045 AB b A A ABBB A A A ≡ ba
P−1 P

We additionally construct a representation for m039 so that we complete our
picture.

a b fundamental group’s relation
m039 I1I3 I3I1I3I1I2I1 aabABaaaaBAb

This representation verifies a7 = (aab)3 = (B aaaa)3 and this implies the funda-
mental group relation.

The peripheral holonomy is prescribed by U = AB and V = ab AB Abaaba. The
images are respectively ρ(U ) = 321313, ρ(V ) = 312132312123 (where we denoted
1,2,3 instead of I1, I2, I3). We can check that ρ(U ) = ρ(V ) by computing ρ(U )−1ρ(V ).

Once θ is fixed in order to have a triangle representation with I2I3I1I3 parabolic
unipotent,ρ(V )has its trace equal to3 and this representation thereforehas parabolic
unipotent boundary.

IV.5 (3,3,∞) – m129 andm203

id an = e bn = e (a,b)n = e
m129-1 [0,0,0] a3 b3

m203-1 [0,0,0] a3 b3

The triangle group is

Λ(3,3,∞) =
〈

I1, I2, I3 ;
I 2

1 = I 2
2 = I 2

3 = e,

(I1I2)3 = (I2I3)3 = e

〉
. (29)

This time, an additional parabolic unipotent element is given by I1I3.

a b fundamental group’s relation I2I3I1I3 = P
m129 I3I1I2I3 I2I3 aaaBBabAAAbbAB B A
m203 I3I1I2I3 I2I3 aaabbaaBAAABBAAb B A

peripheral curves
m129 A Ab ≡ ab A A Abb A ≡ B A

P−1 P
Ab b A A Aba ≡ B a

(I3I2)I1I3(I3I2)−1 (I3I2)(I1I3)−1(I3I2)−1

m203 aab ≡ Ab BB A A AB ≡ e
(I3I2)I1I3(I3I2)−1 e

ab B A A ABB A A A ≡ e
P−1 e
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